Skip to main content
Log in

Understanding Neutral Genomic Molecular Clocks

  • Essay
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The molecular clock hypothesis is a central concept in molecular evolution and has inspired much research into why evolutionary rates vary between and within genomes. In the age of modern comparative genomics, understanding the neutral genomic molecular clock occupies a critical place. It has been demonstrated that molecular clocks run differently between closely related species, and generation time is an important determinant of lineage specific molecular clocks. Moreover, it has been repeatedly shown that regional molecular clocks vary even within a genome, which should be taken into account when measuring evolutionary constraint of specific genomic regions. With the availability of a large amount of genomic sequence data, new insights into the patterns and causes of variation in molecular clocks are emerging. In particular, factors such as nucleotide composition, molecular origins of mutations, weak selection and recombination rates are important determinants of neutral genomic molecular clocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akashi, H. (1994). Synonymous codon usage in Drosophila melanogaster: Natural selection and translational accuracy. Genetics, 136(3), 927–935.

    PubMed  CAS  Google Scholar 

  • Akashi, H. (2001). Gene expression and molecular evolution. Current Opinion in Genetics & Development, 11, 660–666.

    Article  CAS  Google Scholar 

  • Birdsell, J. A. (2002). Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution. Molecular Biology and Evolution, 19, 1181–1197.

    PubMed  CAS  Google Scholar 

  • Bohossian, H. B., Skaletsky, H., & Page, D. C. (2000). Unexpectedly similar rates of nucleotide substitution found in male and female hominids. Nature, 406, 622–625.

    Article  PubMed  CAS  Google Scholar 

  • Britten, R. J. (1986). Rates of DNA sequence evolution differ between taxonomic groups. Science, 231, 1393–1398.

    Article  PubMed  CAS  Google Scholar 

  • Bromham, L., & Penny, D. (2003). The modern molecular clock. Nature Reviews Genetics, 4, 216–224.

    Article  PubMed  CAS  Google Scholar 

  • Cannarozzi, G., Schneider, A., & Gonnet, G. (2007). A phylogenomic study of human, dog and mouse. PLoS Computational Biology, 3(1), e2.

    Article  PubMed  CAS  Google Scholar 

  • Castresana, J. (2002). Estimation of genetic distances from human and mouse introns. Genome Biology, 3(6), research0028.1–0028.7.

    Article  Google Scholar 

  • Chamary, J. V., Parmley, J. L., & Hurst, L. D. (2006). Hearing silence: Non-neutral evolution at synonymous sites in mammals. Nature Reviews Genetics, 7, 98–108.

    Article  PubMed  CAS  Google Scholar 

  • Chang, B. H., Shimmin, L. C., Shyue, S.-K., Hewett-Emmett, D., & Li, W.-H. (1994). Weak male-driven molecular evolution in rodents. Proceedings of the National Academy of Sciences of the United States of America, 91, 827–831.

    Article  PubMed  CAS  Google Scholar 

  • Chen, F. C., & Li, W.-H. (2001). Genomic divergence between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. American Journal of Human Genetics, 68, 444–456.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, J., Kapranov, P., Drenkow, J., Dike, S., Brubaker, S., Patel, S., et al. (2005). Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science, 308(5725), 1149–1154.

    Article  PubMed  CAS  Google Scholar 

  • Chimpanzee Sequencing and Analysis Consortium. (2005). Initial sequence of the chimpanzee genome and comparison with the human genome. Nature, 437, 69–87.

    Article  CAS  Google Scholar 

  • Dermitzakis, E. T., Reymond, A., Lyle, R., Scamuffa, N., Ucla, C., Deutsch, S., et al. (2002). Numerous potentially functional but non-genic conserved sequences on human chromosome 21. Nature, 420, 578–582.

    Article  PubMed  CAS  Google Scholar 

  • Drummond, D. A., Bloom, J. D., Adami, C., Wilke, C. O., & Arnod, F. H. (2005). Why highly expressed proteins evolve slowly. Proceedings of the National Academy of Sciences of the United States of America, 102, 14338–14343.

    Article  PubMed  CAS  Google Scholar 

  • Easteal, S. (1991). The relative ratae of DNA evolution in primates. Molecular Biology and Evolution, 8(1), 115–127.

    PubMed  CAS  Google Scholar 

  • Ellegren, H., & Fridolfsson, A. K. (1997). Male-driven evolution of DNA sequences in birds. Nature Genetics, 17, 182–184.

    Article  PubMed  CAS  Google Scholar 

  • Filipski, J. (1988). Why the rate of silent codon substitutions is variable within a vertebrate’s genome. Journal of Theoretical Biology, 134(2), 159–164.

    Article  PubMed  CAS  Google Scholar 

  • Fullerton, S. M., Bernardo-Carvalho, A., & Clark, A. G. (2001). Local rates of recombination are positively correlated with GC content in the human genome. Molecular Biology and Evolution, 18(6), 1139–1142.

    PubMed  CAS  Google Scholar 

  • Galtier, N., Piganeau, G., Mouchiroud, D., & Duret, L. (2001). GC-content evolution in mammalian genomes: The biased gene conversion hypothesis. Genetics, 159, 907–911.

    PubMed  CAS  Google Scholar 

  • Goodman, M. (1961). The role of immunologic differences in the phyletic development of human behavior. Human Biology, 33, 131–162.

    CAS  Google Scholar 

  • Goodman, M. (1962). Evolution of the immunologic species specificity of human serum proteins. Human Biology, 34, 104–150.

    CAS  Google Scholar 

  • Gu, X., & Li, W.-H. (1992). Higher rates of amino acid substitution in rodents than in humans. Molecular Phylogenetics and Evolution, 1(3), 211–214.

    Article  PubMed  CAS  Google Scholar 

  • Hellmann, I., Ebersberger, I., Ptak, S. E., Paabo, S., & Przeworski, M. (2003). A neutral explanation for the correlation of diversity with recombination rates in humans. American Journal of Human Genetics, 72(6), 1527–1535.

    Article  PubMed  CAS  Google Scholar 

  • Huang, S.-W., Friedman, R., Yu, N., Yu, A., & Li, W.-H. (2005). How strong is the mutagenicity of recombination in mammals? Molecular Biology and Evolution, 22(3), 426–431.

    Article  PubMed  CAS  Google Scholar 

  • Huttley, G. A., Wakefield, M. J., & Easteal, S. (2007). Rates of genome evolution and branching order from whole genome analysis. Molecular Biology and Evolution, 24, 1772–1730.

    Article  CAS  Google Scholar 

  • Jeffreys, A. J., Holloway, J. K., Kauppi, L., May, C. A., Neumann, R., Timothy Slingsby, M., et al. (2004). Meiotic recombination hot spots and human DNA diversity. Philosophical Transactions of the Royal Society London, B., 359, 141–152.

    Article  CAS  Google Scholar 

  • Jeffreys, A. J., Kauppi, L., & Neumann, R. (2001). Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nature Genetics, 29, 217–222.

    Article  PubMed  CAS  Google Scholar 

  • Jensen-Seaman, M. I., Furey, T. S., Payseur, B. A., Lu, Y., Roskin, K. M., Chen, C.-F., et al. (2004). Comparative recombination rates in the rat, mouse, and human genomes. Genome Research, 14(4), 528–538.

    Article  PubMed  CAS  Google Scholar 

  • Jones, P. A., & Takai, D. (2001). The role of DNA methylation in mammalian epigenetics. Science, 293, 1068–1070.

    Article  PubMed  CAS  Google Scholar 

  • Keightley, P. D., Lercher, M. J., & Eyre-Walker, A. (2005). Evidence for widespread degradation of gene control regions in hominoid genomes. PLoS Biology, 3, e42.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.-H., Elango, N., Warden, C. W., Vigoda, E., & Yi, S. (2006). Heterogenous genomic molecular clocks in primates. PLoS Genetics, 2, e163.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Kohne, C. (1970). Evolution of higher-organism DNA. Quarterly Reviews of Biophysics, 3, 327–375.

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov, F. A., Ogurtsov, A. Y., & Kondrashov, A. S. (2006). Selection in favor of nucleotides G and C diversifies evolution rates and levels of polymorphism at mammalian synonymous sites. Journal of Theoretical Biology, 240, 616–626.

    Article  PubMed  CAS  Google Scholar 

  • Kong, A., Gudbhartsson, D. F., Sainz, J., Jonsdottir, G. M., Gudjonsson, S. A., Richardsson, B., et al. (2002). A high-resolution recombination map of the human genome. Nature Genetics, 31, 241–247.

    PubMed  CAS  Google Scholar 

  • Kumar, S. (2005). Molecular clocks: Four decades of evolution. Nature Reviews Genetics, 6, 654–662.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., & Subramanian, S. (2002). Mutation rates in mammalian genomes. Proceedings of the National Academy of Sciences of the United States of America, 99(2), 803–808.

    Article  PubMed  CAS  Google Scholar 

  • Laird, C. D., McConaughy, B. L., & McCarthy, B. J. (1969). Rate of fixation of nucleotide substitutions in evolution. Nature, 224, 149–154.

    Article  PubMed  CAS  Google Scholar 

  • Lercher, M. J., & Hurst, L. D. (2002). Human SNP variability and mutation rate are higher in regions of high recombination. Trends in Genetics, 18(7), 337–340.

    Article  PubMed  CAS  Google Scholar 

  • Li, W.-H. (1997). Molecular evolution. Sunderland, MA: Sinauer.

    Google Scholar 

  • Li, E. (2002). Chromatin modification and epigenetic reprogramming in mammalian development. Nature Reviews Genetics, 3, 662–673.

    Article  PubMed  CAS  Google Scholar 

  • Li, W.-H., Ellsworth, D. L., Krushkal, J., Chang, B. H.-J., & Hewett-Emmett, D. (1996). Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Molecular Phylogenetics and Evolution, 5(1), 182–187.

    Article  PubMed  CAS  Google Scholar 

  • Li, W.-H., Tanimura, M., & Sharp, P. M. (1987). An evaluation of the molecular clock hypothesis using mammalian DNA sequences. Journal of Molecular Evolution, 25, 330–342.

    Article  PubMed  CAS  Google Scholar 

  • Li, W.-H., Yi, S., & Makova, K. (2002). Male-driven evolution. Current Opinion in Genetics & Development, 12(6), 650–656.

    Article  CAS  Google Scholar 

  • Makova, K. D., & Li, W.-H. (2002). Strong male-driven evolution of DNA sequences in humans and apes. Nature, 416, 624–626.

    Article  PubMed  CAS  Google Scholar 

  • Margoliash, E. (1963). Primary structure and evolution of cytochrome C. Proceedings of the National Academy of Sciences of the United States of America, 50, 672–679.

    Article  PubMed  CAS  Google Scholar 

  • McVean, G. A. T., Myers, S. R., Hunt, S., Deloukas, P., Bentley, D. R., & Donnelly, P. (2004). The fine-scale structure of recombination rate variation in the human genome. Science, 304, 581–584.

    Article  PubMed  CAS  Google Scholar 

  • Meunier, J., & Duret, L. (2004). Recombination drives the evolution of GC-content in the human genome. Molecular Biology and Evolution, 21(6), 984–990.

    Article  PubMed  CAS  Google Scholar 

  • Montoya-Burgos, J. I., Boursot, P., & Galtier, N. (2003). Recombination explains isochores in mammalian genomes. Trends in Genetics, 19, 128–130.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, W. J., Eizirik, E., O’Brien, S. J., Madsen, O., Scally, M., Douady, C. J., et al. (2001). Resoluion of the early placental mammal radiation using Bayesian phylogenetics. Science, 294, 2348–2351.

    Article  PubMed  CAS  Google Scholar 

  • Myers, S., Bottolo, L., Frreeman, C., McVean, G., & Donnelly, P. (2005). A fine-scale map of recombination rates and hotspots across the human genome. Science, 310(Oct. 14), 321–324.

    Article  PubMed  CAS  Google Scholar 

  • Nachman, M. W., & Crowell, S. L. (2000). Estimate of the mutation rate per nucleotide in humans. Genetics, 156(1), 297–304.

    PubMed  CAS  Google Scholar 

  • Patterson, N., Richter, D. J., Gnerre, S., Lander, E. S., & Reich, D. (2006). Genetic evidence for complex speciation of humans and chimpanzees. Nature, 441, 1103–1108.

    Article  PubMed  CAS  Google Scholar 

  • Perry, J., & Ashworth, A. (1999). Evolutionary rate of a gene affected by chromosomal position. Current Biology, 9, 987–989.

    Article  PubMed  CAS  Google Scholar 

  • Pollard, K. S., Salama, S. R., Lambert, N., Lambot, M.-A., Coppens, S., Pedersen, J. S., et al. (2006). An RNA gene expressed during cortical development evolved rapidly in humans. Nature, 443, 167–172.

    Article  PubMed  CAS  Google Scholar 

  • Ptak, S. E., Hinds, D. A., Koehler, K., Nickel, B., Patil, N., Ballinger, D. G., et al. (2005). Fine-scale recombination patterns differ between chimpanzees and humans. Nature Genetics, 37(4), 429–434.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, J., Mahaney, M. C., et al. (2000). A genetic linkage map of the baboon (Papio hamadryas) genome based on human microsatellite polymorphisms. Genomics, 67, 237–247.

    Article  PubMed  CAS  Google Scholar 

  • Sarich, V. M., & Wilson, A. C. (1967). Immunological tie scale for hominid evolution. Science, 158, 1200–1203.

    Article  PubMed  CAS  Google Scholar 

  • Semon, M., & Duret, L. (2004). Evidence that functional transcription units cover at least half of the human genome. Trends in Genetics, 20, 229–232.

    Article  PubMed  CAS  Google Scholar 

  • Shimmin, L. C., Chang, B. H., & Li, W.-H. (1993). Male-driven evolution of DNA sequences. Nature, 362, 745–747.

    Article  PubMed  CAS  Google Scholar 

  • Steiper, M. E., & Young, N. M. (2006). Primate molecular divergence dates. Molecular Phylogenetics and Evolution, 41, 384–394.

    Article  PubMed  CAS  Google Scholar 

  • Steiper, M. E., Young, N. M., & Sukrarna, T. Y. (2004). Genomic data support the hominoid slowdown and an early Oligocene estimate for the hominoid-cercopithecoid divergence. Proceedings of the National Academy of Sciences of the United States of America, 101, 17021–17026.

    Article  PubMed  CAS  Google Scholar 

  • Subramanian, S., & Kumar, S. (2003). Neutral substitutions occur at a faster rate in exons than in noncoding DNA in primate genomes. Genome Research, 13, 838–844.

    Article  PubMed  CAS  Google Scholar 

  • Winckler, W., Myers, S. R., Richter, D. J., Onofrio, R. C., McDonald, G. J., Bontrop, R. E., et al. (2005). Comparison of fine-scale recombination rates in humans and chimpanzees. Science, 308(5718), 107–111.

    Article  PubMed  CAS  Google Scholar 

  • Wolfe, K. H., Sharp, P. M., & Li, W.-H. (1989). Mutation rates differ among regions of the mammalian genome. Nature, 337, 283–285.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C.-I., & Li, W.-H. (1985). Evidence for higher rates of nucleotide substitution in rodents than in man. Proceedings of the National Academy of Sciences of the United States of America, 82, 1741–1745.

    Article  PubMed  CAS  Google Scholar 

  • Yi, S., Ellsworth, D. L., & Li, W.-H. (2002). Slow molecular clocks in Old World monkeys, apes, and humans. Molecular Biology and Evolution, 19(12), 2191–2198.

    PubMed  CAS  Google Scholar 

  • Yi, S., & Li, W.-H. (2005). Molecular evolution of recombination hotspots and highly recombining pseudoautosomal regions in hominoids. Molecular Biology and Evolution, 22, 1223–1230.

    Article  PubMed  CAS  Google Scholar 

  • Yi, S., Summers, T. J., Pearson, N. M., & Li, W.-H. (2004). Recombination has little effect on the rate of sequence divergence in pseudoausotomal boundary 1 among humans and great apes. Genome Research, 14, 37–43.

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl, E., & Pauling, L. B. (1962). Molecular disease, evolution, and genetic heterogeneity. In M. Kasha & B. Pullman (Eds.), Horizons in biochemistry (pp. 189–225). New York: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soojin V. Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, S.V. Understanding Neutral Genomic Molecular Clocks. Evol Biol 34, 144–151 (2007). https://doi.org/10.1007/s11692-007-9010-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-007-9010-7

Keywords

Navigation