Skip to main content

Advertisement

Log in

ESR1, FTO, and UCP2 Genes Interact with Bariatric Surgery Affecting Weight Loss and Glycemic Control in Severely Obese Patients

  • Clinical Research
  • Published:
Obesity Surgery Aims and scope Submit manuscript

An Erratum to this article was published on 07 December 2011

Abstract

Background

Significant variability in weight loss and glycemic control has been observed in obese patients receiving bariatric surgery. Genetic factors may play a role in the different outcomes.

Methods

Five hundred and twenty severely obese patients with body mass index (BMI) ≥35 were recruited. Among them, 149 and 371 subjects received laparoscopic adjustable gastric banding (LAGB) and laparoscopic mini-gastric bypass (LMGB), respectively. All individuals were genotyped for five obesity-related single nucleotide polymorphisms on ESR1, FTO, PPARγ, and UCP2 genes to explore how these genes affect weight loss and glycemic control after bariatric surgery at the 6th month.

Results

Obese patients with risk genotypes on rs660339-UCP2 had greater decrease in BMI after LAGB compared to patients with non-risk genotypes (−7.5 vs. −6 U, p = 0.02). In contrast, after LMGB, obese patients with risk genotypes on either rs712221-ESR1 or rs9939609-FTO had significant decreases in BMI (risk vs. non-risk genotype, −12.5 vs. −10.0 U on rs712221, p = 0.02 and −12.1 vs. −10.6 U on rs9939609, p = 0.04) and a significant amelioration in HbA1c levels (p = 0.038 for rs712221 and p < 0.0001 for rs9939609). The synergic effect of ESR1 and FTO genes on HbA1c amelioration was greater (−1.54%, p for trend <0.001) than any of these genes alone in obese patients receiving LMGB.

Conclusions

The genetic variants in the ESR, FTO, and UCP2 genes may be considered as a screening tool prior to bariatric surgery to help clinicians predict weight loss or glycemic control outcomes for severely obese patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. DiPietro L, Dziura J, Yeckel CW. Specific relation between abdominal obesity and early-phase hyperglycemia is modulated by hepatic insulin resistance in healthy older women. Diabetes Care. 2010;33(1):165–7.

    Article  PubMed  CAS  Google Scholar 

  2. Bonora E, Brangani C, Pichiri I. Abdominal obesity and diabetes. G Ital Cardiol Rome. 2008;9(4 Suppl 1):40S–53S.

    PubMed  Google Scholar 

  3. Pan WH, Flegal KM, Chang HY, et al. Body mass index and obesity-related metabolic disorders in Taiwanese and US whites and blacks: implications for definitions of overweight and obesity for Asians. Am J Clin Nutr. 2004;79(1):31–9.

    PubMed  CAS  Google Scholar 

  4. Kashyap SR, Gatmaitan P, Brethauer S, et al. Bariatric surgery for type 2 diabetes: weighing the impact for obese patients. Cleve Clin J Med. 2010;77(7):468–76.

    Article  PubMed  Google Scholar 

  5. Lee WJ, Ser KH, Chong K, et al. Laparoscopic sleeve gastrectomy for diabetes treatment in nonmorbidly obese patients: efficacy and change of insulin secretion. Surgery. 2010;147(5):664–9.

    Article  PubMed  Google Scholar 

  6. Dixon JB, O’Brien PE, Playfair J, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. 2008;299(3):316–23.

    Article  PubMed  CAS  Google Scholar 

  7. Foster GD, Borradaile KE, Vander Veur SS, et al. The effects of a commercially available weight loss program among obese patients with type 2 diabetes: a randomized study. Postgrad Med. 2009;121(5):113–8.

    Article  PubMed  Google Scholar 

  8. Martins C, Strømmen M, Stavne OA, et al. Bariatric surgery versus lifestyle interventions for morbid obesity-changes in body weight, risk factors and comorbidities at 1 year. Obes Surg (2011). Accessed 9 Apr ISSN:1708-0428 (Electronic).

  9. Jaunoo SS, Southall PJ. Bariatric surgery. Int J Surg. 2010;8(2):86–9.

    Article  PubMed  CAS  Google Scholar 

  10. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37.

    Article  PubMed  CAS  Google Scholar 

  11. Lee WJ, Chong K, Lee YC, et al. Effects of obesity surgery on type 2 diabetes mellitus Asian patients. World J Surg. 2009;33(9):1895–903.

    Article  PubMed  Google Scholar 

  12. Thomas S, Schauer P. Bariatric surgery and the gut hormone response. Nutr Clin Pract. 2010;25(2):175–82.

    Article  PubMed  Google Scholar 

  13. Maggard MA, Shugarman LR, Suttorp M, et al. Meta-analysis: surgical treatment of obesity. Ann Intern Med. 2005;142(7):547–59.

    PubMed  Google Scholar 

  14. Lee YC, Lee WJ, Lin WC, et al. Obesity and the decision tree: predictors of sustained weight loss after bariatric surgery. Hepatogastroenterology. 2009;56(96):1745–9.

    PubMed  CAS  Google Scholar 

  15. Clifton P. Diabetes: treatment of type 2 diabetes mellitus with bariatric surgery. Nat Rev Endocrinol. 2010;6(4):191–3.

    Article  PubMed  Google Scholar 

  16. Chen HH, Lee WJ, Wang W, et al. Ala55Val polymorphism on UCP2 gene predicts greater weight loss in morbidly obese patients undergoing gastric banding. Obes Surg. 2007;17(7):926–33.

    Article  PubMed  Google Scholar 

  17. Chen HH, Lee WJ, Fann CS, et al. Severe obesity is associated with novel single nucleotide polymorphisms of the ESR1 and PPARgamma locus in Han Chinese. Am J Clin Nutr. 2009;90(2):255–62.

    Article  PubMed  CAS  Google Scholar 

  18. Chang YC, Liu PH, Lee WJ, et al. Common variation in the fat mass and obesity-associated (FTO) gene confers risk of obesity and modulates BMI in the Chinese population. Diabetes. 2008;57(8):2245–52.

    Article  PubMed  CAS  Google Scholar 

  19. Huang Q, Wang TH, Lu WS, et al. Estrogen receptor alpha gene polymorphism associated with type 2 diabetes mellitus and the serum lipid concentration in Chinese women in Guangzhou. Chin Med J Engl. 2006;119(21):1794–801.

    PubMed  CAS  Google Scholar 

  20. Kovacs P, Ma L, Hanson RL, et al. Genetic variation in UCP2 (uncoupling protein-2) is associated with energy metabolism in Pima Indians. Diabetologia. 2005;48(11):2292–5.

    Article  PubMed  CAS  Google Scholar 

  21. Saleh MC, Wheeler MB, Chan CB. Uncoupling protein-2: evidence for its function as a metabolic regulator. Diabetologia. 2002;45(2):174–87.

    Article  PubMed  CAS  Google Scholar 

  22. Picard F, Auwerx J. PPAR(gamma) and glucose homeostasis. Annu Rev Nutr. 2002;22:167–97.

    Article  PubMed  CAS  Google Scholar 

  23. Carmen GY, Victor SM. Signalling mechanisms regulating lipolysis. Cell Signal. 2006;18(4):401–8.

    Article  PubMed  CAS  Google Scholar 

  24. Rosen ED, Sarraf P, Troy AE, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell. 1999;4(4):611–7.

    Article  PubMed  CAS  Google Scholar 

  25. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Anal Biochem. 1987;162(1):156–9.

    Article  PubMed  CAS  Google Scholar 

  26. Puissant C, Houdebine LM. An improvement of the single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction. Biotechniques. 1990;8(2):148–9.

    Article  PubMed  CAS  Google Scholar 

  27. Chomczynski P, Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: twenty-something years on. Nat Protoc. 2006;1(2):581–5.

    Article  PubMed  CAS  Google Scholar 

  28. Tanyi M, Kanyári Z, Juhász B, et al. Surgical treatment of morbid obesity. Chir Bucur. 2007;102(2):131–41.

    CAS  Google Scholar 

  29. Mittempergher F, Di Betta E, Crea N, et al. Our experience in selecting patients for bariatric surgery. Ann Ital Chir. 2007;78(6):487–92.

    PubMed  Google Scholar 

  30. Lee WJ, Yu PJ, Wang W, et al. Laparoscopic Roux-en-Y versus mini-gastric bypass for the treatment of morbid obesity: a prospective randomized controlled clinical trial. Ann Surg. 2005;242(1):20–8.

    Article  PubMed  Google Scholar 

  31. Wang W, Wei PL, Lee YC, et al. Short-term results of laparoscopic mini-gastric bypass. Obes Surg. 2005;15(5):648–54.

    Article  PubMed  Google Scholar 

  32. Favretti F, Cadiere GB, Segato G, et al. Laparoscopic banding: selection and technique in 830 patients. Obes Surg. 2002;12(3):385–90.

    Article  PubMed  CAS  Google Scholar 

  33. Angrisani L, Furbetta F, Doldi SB, et al. Lap band adjustable gastric banding system: the Italian experience with 1863 patients operated on 6 years. Surg Endosc. 2003;17(3):409–12.

    Article  PubMed  CAS  Google Scholar 

  34. Dargent J. Surgical treatment of morbid obesity by adjustable gastric band: the case for a conservative strategy in the case of failure—a 9-year series. Obes Surg. 2004;14(7):986–90.

    Article  PubMed  Google Scholar 

  35. Wang W, Huang MT, Wei PL, et al. Laparoscopic mini-gastric bypass for failed vertical banded gastroplasty. Obes Surg. 2004;14(6):777–82.

    Article  PubMed  Google Scholar 

  36. Lee WJ, Wang W, Lee YC, et al. Effect of laparoscopic mini-gastric bypass for type 2 diabetes mellitus: comparison of BMI > 35 and <35 kg/m2. J Gastrointest Surg. 2008;12(5):945–52.

    Article  PubMed  Google Scholar 

  37. Souza RP, De Luca V, Muscettola G, et al. Association of antipsychotic induced weight gain and body mass index with GNB3 gene: a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(8):1848–53.

    Article  PubMed  CAS  Google Scholar 

  38. Sartori M, Ceolotto G, Dorigatti F, et al. RGS2 C1114G polymorphism and body weight gain in hypertensive patients. Metabolism. 2008;57(3):421–7.

    Article  PubMed  CAS  Google Scholar 

  39. Dzamko N, van Denderen BJ, Hevener AL, et al. AMPK beta1 deletion reduces appetite, preventing obesity and hepatic insulin resistance. J Biol Chem. 2010;285(1):115–22.

    Article  PubMed  CAS  Google Scholar 

  40. Saiki A, Olsson M, Jernås M, et al. Tenomodulin is highly expressed in adipose tissue, increased in obesity, and down-regulated during diet-induced weight loss. J Clin Endocrinol Metab. 2009;94(10):3987–94.

    Article  PubMed  CAS  Google Scholar 

  41. Figueroa KP, Farooqi S, Harrup K, et al. Genetic variance in the spinocerebellar ataxia type 2 (ATXN2) gene in children with severe early onset obesity. PLoS ONE. 2009;4(12):e8280.

    Article  PubMed  Google Scholar 

  42. Hsiao DJ, Wu LS, Huang SY, et al. Weight loss and body fat reduction under sibutramine therapy in obesity with the C825T polymorphism in the GNB3 gene. Pharmacogenet Genomics. 2009;19(9):730–3.

    Article  PubMed  CAS  Google Scholar 

  43. Nannipieri M, Cecchetti F, Anselmino M, et al. Expression of thyrotropin and thyroid hormone receptors in adipose tissue of patients with morbid obesity and/or type 2 diabetes: effects of weight loss. Int J Obes Lond. 2009;33(9):1001–6.

    Article  PubMed  CAS  Google Scholar 

  44. Tanofsky-Kraff M, McDuffie JR, Yanovski SZ, et al. The FTO gene rs9939609 obesity-risk allele and loss of control over eating. Am J Clin Nutr. 2009;90(6):1483–8.

    Article  PubMed  CAS  Google Scholar 

  45. Toledo FG, Menshikova EV, Ritov VB, et al. Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes. Diabetes. 2007;56(8):2142–7.

    Article  PubMed  CAS  Google Scholar 

  46. Lehmann R, Vokac A, Niedermann K, et al. Loss of abdominal fat and improvement of the cardiovascular risk profile by regular moderate exercise training in patients with NIDDM. Diabetologia. 1995;38(11):1313–9.

    Article  PubMed  CAS  Google Scholar 

  47. Zaninovich AA. Role of uncoupling proteins UCP1, UCP2 and UCP3 in energy balance, type 2 diabetes and obesity. Synergism with the thyroid. Med B Aires. 2005;65(2):163–9.

    CAS  Google Scholar 

  48. Le Fur S, Le Stunff C, Dos Santos C, et al. The common −866G/A polymorphism in the promoter of uncoupling protein 2 is associated with increased carbohydrate and decreased lipid oxidation in juvenile obesity. Diabetes. 2004;53(1):235–9.

    Article  PubMed  Google Scholar 

  49. Yanovski JA, Diament AL, Sovik KN, et al. Associations between uncoupling protein 2, body composition, and resting energy expenditure in lean and obese African American, white, and Asian children. Am J Clin Nutr. 2000;71(6):1405–20.

    PubMed  CAS  Google Scholar 

  50. Buemann B, Schierning B, Toubro S, et al. The association between the val/ala-55 polymorphism of the uncoupling protein 2 gene and exercise efficiency. Int J Obes Relat Metab Disord. 2001;25(4):467–71.

    Article  PubMed  CAS  Google Scholar 

  51. Ukkola O, Tremblay A, Sun G, et al. Genetic variation at the uncoupling protein 1, 2 and 3 loci and the response to long-term overfeeding. Eur J Clin Nutr. 2001;55(11):1008–15.

    Article  PubMed  CAS  Google Scholar 

  52. Astrup A, Toubro S, Dalgaard L, et al. Impact of the v/v 55 polymorphism of the uncoupling protein 2 gene on 24-h energy expenditure and substrate oxidation. Int J Obes Relat Metab Disord. 1999;23(10):1030–4.

    Article  PubMed  CAS  Google Scholar 

  53. Mulcare DB, Dennin HF, Drenick EJ. Effect of diet on malabsorption after small bowel by-pass. J Am Diet Assoc. 1970;57(4):331–5.

    PubMed  CAS  Google Scholar 

  54. Folope V, Coeffier M, Dechelotte P. Nutritional deficiencies associated with bariatric surgery. Gastroentérol Clin Biol. 2007;31(4):369–77.

    Article  PubMed  Google Scholar 

  55. Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94.

    Article  PubMed  CAS  Google Scholar 

  56. Muller TD, Hinney A, Scherag A, et al. ‘Fat mass and obesity associated’ gene (FTO): no significant association of variant rs9939609 with weight loss in a lifestyle intervention and lipid metabolism markers in German obese children and adolescents. BMC Med Genet. 2008;9:85.

    Article  PubMed  Google Scholar 

  57. Peeters A, Beckers S, Verrijken A, et al. Variants in the FTO gene are associated with common obesity in the Belgian population. Mol Genet Metab. 2008;93(4):481–4.

    Article  PubMed  CAS  Google Scholar 

  58. Wahlen K, Sjolin E, Hoffstedt J. The common rs9939609 gene variant of the fat mass- and obesity-associated gene FTO is related to fat cell lipolysis. J Lipid Res. 2008;49(3):607–11.

    Article  PubMed  Google Scholar 

  59. Lee WJ, Wang W. Bariatric surgery: Asia-Pacific perspective. Obes Surg. 2005;15(6):751–7.

    Article  PubMed  Google Scholar 

  60. Potoczna N, Branson R, Kral JG, et al. Gene variants and binge eating as predictors of comorbidity and outcome of treatment in severe obesity. J Gastrointest Surg. 2004;8(8):971–81. discussion 981–2.

    Article  PubMed  Google Scholar 

  61. Dias MC, Ribeiro AG, Scabim VM, et al. Dietary intake of female bariatric patients after anti-obesity gastroplasty. Clin Sao Paulo. 2006;61(2):93–8.

    Google Scholar 

  62. Ribeiro AG, Faintuch J, Dias MC, et al. Euglycemia and normolipidemia after anti-obesity gastric bypass. Nutr Hosp. 2009;24(1):32–9.

    PubMed  CAS  Google Scholar 

  63. Cohen R, Pinheiro JS, Correa JL, et al. Laparoscopic revisional bariatric surgery: myths and facts. Surg Endosc. 2005;19(6):822–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge that this study is partially based on the results derived from Dr. Wen-Hern Pan of Academia Sinica and LM Chuang of National Taiwan University Hospital. We also thank the researchers and subjects for their participation. The authors also have a great appreciation for Taipei Medical University Hospital, Min-Sheng General Hospital, and Chang Jung University. This project supported by the National Science Council, NSC 100-2320-B-309-001.

Conflict of Interest

This paper is not currently being considered by other journals. All authors declare that they have no competing financial interests, agree to submit the paper to this journal, and transfer copyright to the publisher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsin-Hung Chen.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11695-011-0564-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liou, TH., Chen, HH., Wang, W. et al. ESR1, FTO, and UCP2 Genes Interact with Bariatric Surgery Affecting Weight Loss and Glycemic Control in Severely Obese Patients. OBES SURG 21, 1758–1765 (2011). https://doi.org/10.1007/s11695-011-0457-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-011-0457-3

Keywords

Navigation