Skip to main content
Log in

Biochemical properties, molecular characterizations, functions, and application perspectives of phytases

  • Review
  • Published:
Frontiers of Agriculture in China

Abstract

As a kind of enzyme widely existing in eukaryotic species, especially in grains and oil seeds, phytases play an important role in the degradation of some phosphates containing organic molecules. So far, phytases derived from various species have been successfully used as animal feed additives. It has also been experimentally verified that phytases have a potential use in generating crop germplasm with high phosphorus use efficiency, based on their biochemical role in releasing Pi from the phytate and its derivatives. In this paper, the biochemical properties, molecular characterizations, functions and the potential application perspective of phytases are reviewed and commented on, aiming at the further exploration of the biochemical and molecular characterizations, and promotion of the application of phytases, a kind of important enzyme possessing potential use in animal feeding and creation of high P use crop cultivars, in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aaron A (2006). Expanding our knowledge of protein tyrosine phosphatase-like phytases: mechanism, substrate specificity and pathways of myo-inositol hexakisphosphate dephosphorylation. Dissertation for the Master’s Degree. Lethbridge, Alta.: University of Lethbridge, 10–13

    Google Scholar 

  • Agostini J D, Ida E I (2006). Partially characterization and application of phytase extracted from germinated sun-flower seeds. Pesquisa Agropecuaria Brasileira, 41(6): 1041–1047

    Google Scholar 

  • Andriotis V M E, Ross J D (2003). Isolation and characterisation of phytase from dormant Corylus avellana seeds. Phytochemistry, 64(3): 689–699

    Article  PubMed  CAS  Google Scholar 

  • Angelis M, Gallo G, Corbo M R, McSweeney P L H, Faccia M, Giovine M, Gobbetti M (2003). Phytase activity in sourdough lactic acid bacteria: Purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. International Journal of Food Microbiology, 87: 259–270

    Article  PubMed  CAS  Google Scholar 

  • Barrientos L, Scott J J, Murthy P P (1994). Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen. Plant Physiology, 106: 1489–1495

    Article  PubMed  CAS  Google Scholar 

  • Berka R M, Rey M W, Brown K M, Byun T, Klotz A V (1998). Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Appllied and Environmental Microbiology, 64: 4423–4427

    CAS  Google Scholar 

  • Bohn L, Josefsen L, Meyer A S, Rasmussen S K (2007). Quantitative analysis of phytate globoids isolated from wheat bran and characterization of their sequential dephosphorylation by wheat phytase. Journal of Agricultural and Food Chemistry, 55(18): 7547–7552

    Article  PubMed  CAS  Google Scholar 

  • Brinch-Pedersen H, Olesen A, Rasmussen S K, Holm P B (2000). Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Molecular Breeding, 6: 195–206

    Article  CAS  Google Scholar 

  • Carla E H, Elizabeth A G (2001). A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings. Plant Physiology, 126: 1598–1608

    Article  Google Scholar 

  • Chen RM, Xue G X, Chen P, Yao B, Yang WZ, Ma Q L, Fan Y L, Zhao Z Y, Tarczynski M C, Shi J R (2008). Transgenic maize plants expressing a fungal phytase gene. Transgenic Research, 17(4): 633–643

    Article  PubMed  CAS  Google Scholar 

  • Cho J S, Lee C W, Kang S H, Lee J C, Bok J D, Moon Y S, Lee H G, Kim S C, Choi Y J (2003). Purification and characterization of a phytase from Pseudomonas syringae MOK1. Current Microbiology, 47: 290–294

    Article  PubMed  CAS  Google Scholar 

  • Chu H M, Guo R T, Lin T W, Chou C C, Shr H L, Lai H L, Tang T Y, Cheng K J, Selinger B L, Wang A H J (2004). Structures of Selenomonas ruminantium phytase in complex with persulfated phytate: DSP phytase fold and mechanism for sequential substrate hydrolysis. Structure, 12: 2015–2024

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove D J (1970). Inositol phosphate phosphatase of microbiological origin. Inositol pentaphosphate intermediates in the dephosphorylation of the hexaphosphates of myo-inositol, scyllo-inositol, and D-chiro-inositol, by a bacterial (Pseudomonas sp.) phytase. Austrulia Journal of Biological Science, 23: 1207–1220

    CAS  Google Scholar 

  • Craxton A, Caffrey J J, Burkhart W, Safrany S T, Shears S B (1997). Molecular cloning and expression of a rat hepatic multiple inositol polyphosphate phosphatase. Biochemistry Journal, 328: 75–81

    CAS  Google Scholar 

  • Dassa E, Fsihi H, Marck C, Dion M, Kieffer-Bontemps M, Boquet P L (1992). A new oxygen-regulated operon in Escherichia coli comprises the genes for a putative third cytochrome oxidase and for pH 2.5 acid phosphatase (appA). Molecular and General Genetics, 229: 341–352

    Google Scholar 

  • Denbow D M, Grabau E A, Lacy G H, Kornegay E T, Russell D R, Umbeck P F (1998). Soybeans transformed with a fungal phytase gene improve phosphorus availability for broilers. Poultry Science, 77(6): 878–881

    PubMed  CAS  Google Scholar 

  • Drakakaki G, Marcel S, Glahn R P, Lund E K, Pariagh S, Fisher R, Christou P, Stoger E (2005). Endosperm specific coexpression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Molecular Biology, 59: 869–880

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich K C, Montalbano B G, Mullaney E J, Dischinger H C, Ullah A J (1993). Identification and cloning of a second phytase gene (phyB) from Aspergillus niger. Biochemical and Biophysical Research Communicatons, 195: 53–57

    Article  CAS  Google Scholar 

  • Farhat A, Chouayekh H, Ben F M, Bouchaala K, Bejar S (2008). Gene cloning and characterization of a thermostable phytase from Bacillus subtilis US417 and assessment of its potential as a feed additive in comparison with a commercial enzyme. Molecular Biotechnology, 40(2): 127–135

    Article  PubMed  CAS  Google Scholar 

  • Fu DW, Huang H Q, Meng K, Wang Y R, Luo H Y, Yang P L, Yuan T Z, Yao B (2009). Improvement of Yersinia frederiksenii phytase performance by a single amino acid substitution. Biotechnology and Bioengineering, 103(5): 857–864

    Article  PubMed  CAS  Google Scholar 

  • George T S, Simpson R J, Hadobas P A, Richardson A E (2005). Expression of a fungal phytase gene in Nicotiana tabacum improves phosphorus nutrition of plants grown in amended soils. Plant Biotechnology Journal, 3(1): 129–140

    Article  PubMed  CAS  Google Scholar 

  • Gibbins L N, Norris F W (1963). Phytase and acid phosphatase in the dwarf bean (Phaseolus vulgaris). Biochemistry Journal, 86: 67–71

    CAS  Google Scholar 

  • Goel M, Sharma C B (1979). Multiple forms of phytase in germinating cotyledons of cucurbita-maxima. Phytochemistry, 18(12): 1939–1942

    Article  CAS  Google Scholar 

  • Gonnety J T, Niamke S, Meuwiah F B, N’guessan Kouadio E J, Kouame L P (2007). Purification, kinetic properties and physicochemical characterization of a novel acid phosphatase (AP) from germinating peanut (Arachis hypogaea) seed. Italian Journal of Biochemistry, 56(2): 149–157

    PubMed  CAS  Google Scholar 

  • Greiner R (2002). Purification and characterization of three phytate-degrading enzymes from germinated lupin seeds (Lupinus albus var. amiga), Journal of Agricultural and Food Chemistry, 50: 6858–6864

    Article  PubMed  CAS  Google Scholar 

  • Greiner R (2004a). Degradation of myo-inositol hexakisphosphate by a phytate-degrading enzyme from Pantoea agglomerans. Protein Journal, 23: 577–585

    Article  PubMed  CAS  Google Scholar 

  • Greiner R (2004b). Purification and properties of a phytate-degrading enzyme from Pantoea agglomerans. Protein Journal, 23: 567–576

    Article  PubMed  CAS  Google Scholar 

  • Greiner R, Alminger M L (1999). Purification and characterization of a phytate-degrading enzyme from germinated oat (Avena sativa). Journal of the Science of Food and Agriculture, 79: 1453–1460

    Article  CAS  Google Scholar 

  • Greiner R, Alminger M L (2001). Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by phytate-degrading enzymes of cereals. Journal of Food Biochemistry, 25: 229–248

    Article  CAS  Google Scholar 

  • Greiner R, Alminger M L, Carlsson N G (2001a). Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme of baker’s yeast. Journal of Agricultural and Food Chemistry, 49: 2228–2233

    Article  PubMed  CAS  Google Scholar 

  • Greiner R, Alminger M L, Carlsson N G, Muzquiz M, Burbano C, Cuadrado C, Pedrosa M M, Goyoaga C (2002a). Pathway of dephosphorylation of myo-inositol hexakisphosphate by phytases from legume seeds. Journal of Agricultural and Food Chemistry, 50: 6865–6870

    Article  PubMed  CAS  Google Scholar 

  • Greiner R, Carlsson N G, Alminger M L (2001b). Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme of Escherichia coli. Journal of Biotechnology, 84: 53–62

    Article  PubMed  CAS  Google Scholar 

  • Greiner R, Farouk A, Alminger M L, Carlsson N G (2002b). The pathway of dephosphorylation of myo-inositol hexakisphosphate by phytate-degrading enzymes of different Bacillus spp. Canada Journal of Microbiology, 48: 986–994

    Article  CAS  Google Scholar 

  • Greiner R, Haller E, Konietzny U, Jany K D (1997). Purification and characterization of a phytase from Klebsiella terrigena. Archives of Biochemistry and Biophysics, 341: 201–206

    Article  PubMed  CAS  Google Scholar 

  • Greiner R, Jany K D, Alminger ML (2000). Identification and properties of myo-inositol hexakisphosphate phospho-hydrolases (phytases) from barley (Hordeum vulgare). Journal of Cereal Science, 3: 127–139

    Article  CAS  Google Scholar 

  • Greiner R, Konietzny U, Jany K D (1993). Purification and characterization of two phytases from Escherichia coli. Archives of Biochemistry and Biophysics, 303: 107–113

    Article  PubMed  CAS  Google Scholar 

  • Greiner R, Konietzny U, Jany K D (1998). Purification and properties of a phytase from rye. Journal of Food Biochemistry, 22: 143–161

    Article  CAS  Google Scholar 

  • Guimaraes L H S, Terenzi H F, Jorge J A, Leone F D, Polizeli M T M (2004). Characterization and properties of acid phosphatases with phytase activity produced by Aspergillus caespitosus. Biotechnology and Appllied Biochemistry, 40: 201–207

    Article  CAS  Google Scholar 

  • Hamada A, Yamaguchi K, Harada M, Horiguchi K, Takahashi T, Honda H (2006). Recombinant, rice-produced yeast phytase shows the ability to hydrolyze phytate derived from seed-based feed, and extreme stability during ensilage treatment. Bioscience, Biotechnology, and Biochemistry, 70(6): 1524–1527

    Article  PubMed  CAS  Google Scholar 

  • Hara A, Ebina S, Kondo A, Funaguma T (1985). A new type of phytase from pollen of Typha-Latifolia. Agricultural and Biological Chemistry, 49(12): 3539–3544

    CAS  Google Scholar 

  • Hartingsveldt W, Zeijl C M J, Hartereld G M (1993). Cloning, characterization and overexpression of the phytase-encoding gene (phyA) of Aspergillus niger. Gene, 127: 87–94

    Article  PubMed  Google Scholar 

  • Hayakawa T, Suzuki K, Miura H, Ohno T, Igaue I (1990). Myoinositol polyphosphate intermediates in the dephosphorylation of phytic acid by acid-phosphatase with phytase activity from rice bran. Agricultural and Biological Chemistry, 54: 279–286

    CAS  Google Scholar 

  • Hayakawa T, Toma Y, Igaue I (1989). Purification and characterization of acid-phosphatases with or without phytase activity from rice bran. Agricultural and Biological Chemistry, 53(6): 1475–1483

    CAS  Google Scholar 

  • Hbel F, Beck E (1996). Maize root phytase. Plant Physiology, 112: 1429–1436

    Google Scholar 

  • Hong C Y, Cheng K J, Tseng T H, Wang C S, Liu L F, Yu S M (2004). Production of two highly active bacterial phytases with broad pH optima in germinated transgenic rice seeds. Transgenic Research, 13(1): 29–39

    Article  PubMed  CAS  Google Scholar 

  • Hong Y F, Liu C Y, Cheng K J, Hour A L, Chan M T, Tseng T H, Chen K Y, Shaw J F, Yu S M (2008). The sweet potato sporamin promoter confers high-level phytase expression and improves organic phosphorus acquisition and tuber yield of transgenic potato. Plant Molecular Biology, 67(4): 347–361

    Article  PubMed  CAS  Google Scholar 

  • Huang H Q, Luo H Y, Wang Y R, Fu D W, Shao N, Wang G Z, Yang P L, Yao B (2008). A novel phytase from Yersinia rohdei with high phytate hydrolysis activity under low pH and strong pepsin conditions. Appllied Microbiology and Biotechnology, 80(3): 417–426

    Article  CAS  Google Scholar 

  • Huang H Q, Shao N, Wang Y R, Luo H Y, Yang P L, Zhou Z G, Zhan Z C, Yao B (2009). A novel beta-propeller phytase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive. Appllied Microbiology and Biotechnology, 83(2): 249–259

    Article  CAS  Google Scholar 

  • Jia Z, Golovan S, Ye Q (1998). Purification, crystallization and preliminary X-ray analysis of the Escherichia coli phytase. Acta Crystallographica, 54(4): 47–64

    Google Scholar 

  • Jog S P, Garchow B G, Mehta B D, Murthy P P N (2005). Alkaline phytase from lily pollen: Investigation of biochemical properties. Archives of Biochemistry and Biophysics, 440: 133–140

    Article  PubMed  CAS  Google Scholar 

  • Jongbloed AW, Kemme P A, Mroz Z (1996). Phytase in swine rations: impact on nutrition and environment. BASF Technical Symposium, 44–69

  • Kerovou J, Lauraeus M, Nurminen P (1998). Isolation, characterization, molecular gene cloning and sequencing of a novel phytase from Bacillus subtilis. Appllied and Environmental Microbiology, 64: 2079–2085

    Google Scholar 

  • Kerovuo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J (1998). Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Applied and Environmental Microbiology, 64: 2079–2085

    PubMed  CAS  Google Scholar 

  • Kerovuo J, Rouvinen J, Hatzack F (2000). Analysis of myo-inositol hexakisphosphate hydrolysis by Bacillus phytase: indication of a novel reaction mechanism. Journal of Biochemitry, 352: 623–628

    Article  CAS  Google Scholar 

  • Kim H W, Kim Y O, Lee J H, Kim K K, Kim Y J (2003). Isolation and characterization of a phytase with improved properties from Citrobacter braakii. Biotechnology Letters, 25: 1231–1234

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Eskin N A M (1987). Canola phytase isolation and characterization. Journal of Food Science, 52(5): 1353–1354

    Article  CAS  Google Scholar 

  • Kim T, Edward J, Mullaney, Jesus M, Porres, Karl R, Roneker, Sarah Crowe, Sarah Rice, Taegu Ko, Abul H J, Ullah, Catherine B, Daly, Ross W, Xin G L (2006). Shifting the pH profile of Aspergillus niger PhyA phytase to match the stomach pH enhances its effectiveness as an animal feed additive. Applied and Environmental Microbiology, 72(6): 4397–4403

    Article  PubMed  CAS  Google Scholar 

  • Kim Y O, Kim H K, Bae K S, Yu J H, Oh T K (1998a). Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzyme and Microbial Technology, 22: 2–7

    Article  CAS  Google Scholar 

  • Kim Y O, Lee J K, Kim H K, Yu J H, Oh T K (1998b). Cloning of the thermostable phytase gene (phy) from Bacillus sp. DS11 and its overexpression in Escherichia coli. FEMS Microbiology Letters, 162(1): 185–191

    Article  PubMed  CAS  Google Scholar 

  • Konietzny U, Greiner R (2002). Molecular and catalytic properties of phytate-degrading enzymes (phytases). International Journa of Food Science and Technology, 37: 791–812

    Article  CAS  Google Scholar 

  • Konietzny U, Greiner R, Jany K D (1994). Purification and characterization of a phytase from spelt. Journal of Food Biochemistry, 18(3): 165–183

    Article  Google Scholar 

  • Konietzny U, Greiner R, Jany K D (1995). Purification and characterization of a phytase from spelt. Journal of Food Biochemistry, 18: 165–183

    Article  CAS  Google Scholar 

  • Koonin E V (1994). Conserved sequence pattern in a wide variety of phosphoesterases. Protein Sci, 3: 356–358.

    Article  PubMed  CAS  Google Scholar 

  • Kostrewa D, Grüninger-Leitch F, D’Arcy A, Broger C, Mitchell D, van Loon A P G M (1997). Crystal structure of phytase from Aspergillus ficuum at 2.5 A resolution. Nature Structural Biology, 4: 185–190

    Article  PubMed  CAS  Google Scholar 

  • Laboure A M, Gagnon J, Lescure A M (1993). Purification and characterization of a phytase (myo-inositol-hexakisphosphate phosphohydrolase) accumulated in maize (Zea mays) seedlings during germination. Biochemistry Journal, 295: 413–419

    CAS  Google Scholar 

  • Lei X G, Porres J M, Mullaney E J, Brinch-Pedersen H (2007). Phytase: Source, Structure and Application. In: Poilna J, MacCabe A P, eds. Industrial Enzymes, Structure, Function and Application. Berlin: Springer, 505–529

    Google Scholar 

  • Li G L, Yang S H, Li M G, Qiao Y K, Wang J H (2009). Functional analysis of an Aspergillus ficuum phytase gene in Saccharomyces cerevisiae and its root-specific, secretory expression in transgenic soybean plants. Biotechnology Letters, 31(8): 1297–1303

    Article  PubMed  CAS  Google Scholar 

  • Li J, Hegeman C E, Hanlon RW, Lacy G H, Denbow M D, Grabau E A (1997). Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiology, 114: 1103–1111

    Article  PubMed  CAS  Google Scholar 

  • Li M, Osaki M, Honma M, Tadano T (1997). Purification and characterization of phytase induced in tomato roots under phosphorus-deficient conditions. Soil Science and Plant Nutrition, 43: 179–190

    CAS  Google Scholar 

  • Lim D, Golovan S, Forsberg C W (2000). Crystal structures of Escherichia coli phytase and its complex with phytate. Nature Structural & Molecular Biology, 7: 108–113

    Article  CAS  Google Scholar 

  • Lim M H, Lee O H, Chin J E, Ko H M, Kim I C, Lee H B, Im S Y, Bai S (2008). Simultaneous degradation of phytic acid and starch by an industrial strain of Saccharomyces cerevisiae producing phytase and alpha-amylase. Biotechnology Letters, 30(12): 2125–2130

    Article  PubMed  CAS  Google Scholar 

  • Lim P E, Tate M E (1973). The phytases: II. Properties of phytase fraction F1 and F2 from wheat bran and the myo-inositol phosphates produced by fraction F2. Biochimica et Biophysica Acta, 302: 326–328

    Google Scholar 

  • Liu Q, Huang Q Q, Lei X G, Hao Q (2004). Crystallographic snapshots of Aspergillus fumigatus phytase, revealing its enzymatic dynamics. Structure, 12(9): 1575–1583

    Article  PubMed  CAS  Google Scholar 

  • Loewus F A, Murthy P P N (2000). Myo-inositol metabolism in plants. Plant Science, 150: 1–19

    Article  CAS  Google Scholar 

  • Lolas G M, Markakis P (1977). Phytase of navy beans (Phaseolus vulgaris). Journal of Food Science, 42(4): 1094–1097

    Article  CAS  Google Scholar 

  • Mahajan A, Dua S (1997). Nonchemical approach for reducing antinutritional factors in rape seed (Brassica campestris var. toria) and characterization of enzyme phytase. Journal of Agricultural and Food Chemistry, 45(7): 2504–2508

    Article  CAS  Google Scholar 

  • Maiti I B, Majumber A L, Biswas B B (1974). Purification and mode of action of phytase from Phaseolus aureus. Phytochemistry, 13: 1047–1051

    Article  CAS  Google Scholar 

  • Mandal N C, Biswas B B, Burman S (1972). Metabolism of inositol phosphates. 3. Isolation, purification and characterization of phytase from germinating mung beans. Phytochemistry, 11(2): 495–502

    Article  CAS  Google Scholar 

  • Maugenest S, Martinez I, Godin B, Perez P, Lescure A M (1999). Structure of two maize phytase genes and their spatio-temporal expression during seedling development. Plant Molecular Biology, 39: 503–514

    Article  PubMed  CAS  Google Scholar 

  • Maugenest S, Martinez I, Lescure A M (1997). Cloning and characterization of a cDNA encoding a maize seedling phytase. Biochemistry Journal, 322: 511–517

    CAS  Google Scholar 

  • Mitchell D B, Vogel K, Weimann B, Pasamontes L, van Loon A P G M (1997). The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology, 143: 245–252

    Article  PubMed  CAS  Google Scholar 

  • Mondal M K, Panda S, Biswas P (2007). Effect of microbial phytase in soybean meal based broiler diets containing low phosphorus. Poultry Science, 6: 201–206

    Article  Google Scholar 

  • Mullaney E J, Daly C B, Ullah A H J (2000). Advances in phytase research. Advances in Appllied Microbiology, 47: 157–199

    Article  CAS  Google Scholar 

  • Mullaney E J, Ullah A H J (1998). Conservation of the active site motif in Aspergillus niger (ficcum) pH 6.0 optimum acid phosphatase and kidney bean purple acid phosphatase. Biochemical and Biophysical Research Communications, 243: 471–473

    Article  PubMed  CAS  Google Scholar 

  • Mullaney E J, Ullah A H J (2003). The term phytase comprises several different classes of enzymes. Biochemical and Biophysical Research Communications, 312: 179–184

    Article  PubMed  CAS  Google Scholar 

  • Nagai Y, Funahashi S (1962). Phytase (myo-inositol-hexaphosphate phosphohydrolase) from wheat bran. purification and substrate specificity. Agricultural and Biological Chemistry, 26(12): 794–803

    CAS  Google Scholar 

  • Nakano T, Joh T, Narita K, Hayakawa T (2000). The pathway of dephosphorylation of myo-inositol hexakisphosphate by phytases from wheat bran of Triticum aestivum. Bioscience Biotechnology and Biochemistry, 64: 995–1003

    Article  CAS  Google Scholar 

  • Nakano T, Joh T, Tokumoto E, Hayakawa T (1999). Purification and characterization of phytase from bran of Triticum aestivum L. cv. Nourin. Food Science and Technology Research, 5: 18–23

    Article  CAS  Google Scholar 

  • O’Dell B, de Boland A R, Koirtyohann S R (1991). Distribution of phytate and nutritionally important elements among the morphological components of cereal grains. Journal of Agricultural and Food Chemistry, 20: 718–721

    Article  Google Scholar 

  • Ostanin K, Harms E H, Stevis P E, Kuciel R, Zhou M M, van Etten R L (1992). Overexpression, site-directed mutagenesis, and mechanism of Escherichia coli acid phosphatase. Journal of Biological Chemistry, 267: 22830–22836

    PubMed  CAS  Google Scholar 

  • Pasamontes L, Haiker M, Wyss M, Tessier M, van Loon A P G M (1997). Gene cloning, purification, and characterization of a heatstable phytase from the fungus Aspergillus fumingatus. Appllied and Environmental Microbiology, 63: 1696–1700

    CAS  Google Scholar 

  • Pen J, Verwoerd T C, van Paridin P A, Beukeder R F, van der Elzen P J M, Geerse K (1993). Phytase-containing transgenic seed as a novel feed additive for improved phosphorus utilization. Bio/Technology, 11: 811–814

    Article  CAS  Google Scholar 

  • Phillippy B Q (1998). Purification and catalytic properties of a phytase from scallion (Allium fistulosum L.) leaves. Journal of Agricultural and Food Chemistry, 46: 3491–3496

    Article  CAS  Google Scholar 

  • Piddington C S, Houston C S, Paloheimo M, Cantrell M, Miettinen-Oinonen A, Nevalainen H, Rambosek J (1993). The cloning and sequencing of the genes encoding phytase (phy) and pH 2.5-optimum acid phosphatase (aph) from Aspergillus niger var. awamori. Gene, 133: 55–62

    Article  PubMed  CAS  Google Scholar 

  • Ponstein A S, Bade J B, Verwoerd T C, Molendijk L, Storms J, Beudeker R F (2002). Stable expression of phytase (phyA) in canola (Brassica napus) seeds: towards a commercial product. Molecular Breeding, 10: 31–44

    Article  CAS  Google Scholar 

  • Powar V K, Jagannathan V (1982). Purification and properties of phytate-specific phosphatase from Bacillus subtilis. Journal of Bacteriology, 151(3): 1102–1108

    PubMed  CAS  Google Scholar 

  • Promdonkoy P, Tang K, Sornlake W, Harnpicharnchai P, Kobayashi R S, Ruanglek V, Upathanpreecha T, Vesaratchavest M, Eurwilaichitr L, Tanapongpipat S (2009). Expression and characterization of Aspergillus thermostable phytases in Pichia pastoris. FEMS Microbiology Letters, 290(1): 18–24

    Article  PubMed  CAS  Google Scholar 

  • Quan C S, Fan S D, Zhang L H, Tian W J, Ohta Y (2002). Purification and properties of a phytase from Candida krusei WZ-001. Journal of Bioscience and Bioengineering, 94: 419–425

    PubMed  CAS  Google Scholar 

  • Quan C S, Tian W J, Fan S D, Kikuchi J I (2004). Purification and properties of a low-molecular-weight phytase from Cladosporium sp. FP-1. Journal of Bioscience and Bioengineering, 97: 260–266

    PubMed  CAS  Google Scholar 

  • Ragon M, Hoh F, Aumelas A, Chiche L, Moulin G, Boze H (2009). Structure of Debaryomyces castellii CBS 2923 phytase. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 65(4): 321–326

    Article  CAS  Google Scholar 

  • Rao D E, Rao K V, Reddy V D (2008). Cloning and expression of Bacillus phytase gene (phy) in Escherichia coli and recovery of active enzyme from the inclusion bodies. Journal of Appllied Microbiology, 105(4): 1128–1137

    Article  CAS  Google Scholar 

  • Ravindran V, Bryden W L, Kornegay E T (1995). Phytates: occurrence, bioavailability and implications in poultry nutrition. Poultry and Avain Biology Reviews, 6: 125–143

    Google Scholar 

  • Reddy N R, Sathe S K, Salunkhe D K (1982). Phytates in legumes and cereals. Advances in Food Research, 28: 1–92

    PubMed  CAS  Google Scholar 

  • Reddy V A, Venu K, Rao D E, Rao K Y, Reddy V D (2009). Chimeric gene construct coding for bi-functional enzyme endowed with endoglucanase and phytase activities. Archives of Microbiology, 191(2): 171–175.

    Article  PubMed  CAS  Google Scholar 

  • Richardson A E, Hadobas PA, Hayes J E (2001). Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant Journal, 25(6): 641–649

    Article  PubMed  CAS  Google Scholar 

  • Sajidan A, Farouk A, Greiner R, Jungblut P, Müller E C, Borriss R (2004). Molecular and physiological characterisation of a 3-phytase from soil bacterium Klebsiella sp. ASR1. Appllied Microbiology and Biotechnology, 65: 110–118

    CAS  Google Scholar 

  • Sariyska M V, Gargova S A, Koleva L A, Angelov A I (2005). Aspergillus niger phytase: purification and characterization. Biotechnology, 98–105

  • Segueilha L, Lambrechts C, Boze H, Moulin G, Galzy P (1992). Purification and properties of the phytase from Schwannio-myces castellii. Journal of Fermenttation and Bioengineering, 74: 7–11

    Article  CAS  Google Scholar 

  • Shao N, Huang H, Meng K (2008). Cloning, expression, and characterization of a new phytase from the phytopathogenic bacterium Pectobacterium wasabiae DSMZ 18074. Journal of Microbiology and Biotechnology, 18(7): 1221–1226

    PubMed  CAS  Google Scholar 

  • Shimizu M (1993). Purification and characterization of phytase and acid phosphatase produced by Aspergillus oryzae K1. Bioscience, Biotechnology and Biochemistry, 57: 1364–1365

    Article  CAS  Google Scholar 

  • Simons P C M, Versteegh A J, Jongbloed AW, Kemme P A, Slump P, Bos K D, Wolters G E, Buedeker R F, Verschoor G J (1990). Improvement of phosphorus availability by microbial phytase in broilers and pigs. Nutrition, 64: 525–540

    Article  CAS  Google Scholar 

  • Suzuki U, Yoshimura K, Takaishi M (1907). Ueber ein Enzyme phytase das Anhydrooxy-methylen disphosphorasure spaltet. Collections of Agricultu al Bulletins of Tokyo Imperial University, 7: 495–512

    Google Scholar 

  • Tambe S M, Kaklij G S, Keklar S M, Parekh L J (1994). Two distinct molecular forms of phytase from Klebsiella aerogenes: Evidence for unusually small active enzyme peptide. Journal of Fermentation and Bioengineering, 77: 23–27

    Article  CAS  Google Scholar 

  • Tseng Y H, Fang T J, Tseng SM (2000). Isolation and characterization of a novel phytase from Penicillium simplicissimum. Folia Microbiologica. 45: 121–127

    Article  PubMed  CAS  Google Scholar 

  • Tye A J, Siu F K Y, Leung T Y C, Lim B L (2002). Molecular cloning and the biochemical characterization of two novel phytases from Bacillus subtilis 168 and Bacillus licheniformis. Applied Microbiology and Biotechnology, 59: 190–197

    Article  PubMed  CAS  Google Scholar 

  • Ullah A H J (1988). Aspergillus ficuum phytase: partial primary structure, substrate selectivity and kinetic characterization. Preparative Biochemistry, 18: 459–471

    Article  PubMed  CAS  Google Scholar 

  • Ullah A H J, Cummins B J, Dischinger J H C (1991). Cyclohexanedione modification of arginine at the active site of Aspergillus ficuum phytase. Biochemical and Biophysical Research Communications, 178: 45–53

    Article  PubMed  CAS  Google Scholar 

  • Ullah A H J, Dischinger Jr H C (1993). Aspergillus ficuum phytase: complete primary structure elucidation by chemical sequencing. Biochemical and Biophysical Research Communications, 192(2): 747–753

    Article  PubMed  CAS  Google Scholar 

  • Ullah A H J, Gibson D M (1987). Extracellular phytase (EC.3.1.3.8) from Aspergillus ficuum NRRL 3135: purification and characterization. Preparative Biochemistry, 17: 63–91

    Article  PubMed  CAS  Google Scholar 

  • Ullah A H J, Sethumadhavan K (2003). PhyA gene product of Aspergillus ficuum and Peniophora lycii produces dissimilar phytases. Biochemical and Biophysical Research Communications, 303: 463–468

    Article  PubMed  CAS  Google Scholar 

  • Ullah A H J, Sethumadhavan K, Lei X G, Mullaney E J (2000). Biochemical characterization of cloned Aspergillus fumigatus phytase (phyA). Biochemical and Biophysical Research Communications, 275: 279–285

    Article  PubMed  CAS  Google Scholar 

  • van Staden J, den Haan R, van Zyl W H, Botha A, Viljoen-Bloom M (2007). Phytase activity in Cryptococcus laurentii ABO 510. FEMS Yeast Research, 7(3): 442–448

    Article  PubMed  CAS  Google Scholar 

  • vander Kaay J, van Haastert J M (1995). Stereospecificity of inositol hexaphosphate dephosphorylation by Paramecium phytase. Biochemistry Journal, 312: 907–910

    Google Scholar 

  • Verwoerd T C, van Paridon PA, van Ooyen A J, van Lent JW, Hoekema A, Pen J (1995). Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiology, 109(4): 1199–1205

    Article  PubMed  CAS  Google Scholar 

  • Vohra A, Satyanarayana T (2002). Purification and characterization of a thermostable and acid-stable phytase from Pichia anomala. World Journal of Microbiology and Biotechnology, 18: 687–691

    Article  CAS  Google Scholar 

  • Wyss M, Brugger R, Kronenberger A, Remy R, Fimbell R, Oesterhelt G, Lehmann M, van Loon A P G M (1999). Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohyrolases): catalytic properties. Appllied and Environmental Microbiology, 65: 367–373

    CAS  Google Scholar 

  • Xiao K, Harrison M J, Wang Z Y (2005). Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis. Planta, 222: 27–36

    Article  PubMed  CAS  Google Scholar 

  • Xiong A S, Yao Q H, Peng R H, Zhang Z, Xu F, Liu J G, Han P L, Chen J M (2006). High level expression of a synthetic gene encoding Peniophora lycii phytase in methylotrophic yeast Pichia pastoris. Appllied Microbiology and Biotechnology, 72(5): 1039–1047

    Article  CAS  Google Scholar 

  • Yang W J, Matsuda Y, Sano S, Masutani H, Nakagawa H (1991). Purification and characterization of phytase from rat intestinal mucosa, Biochimica et Biophysica Acta, 1075: 75–82

    PubMed  CAS  Google Scholar 

  • Zhang W M, Edward J M, Xin G L (2007). Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase. Appllied and Environmental Microbiology, 73(9): 3069–3076

    Article  CAS  Google Scholar 

  • Zhang Z B, Kornegay E T, Radcliffe J S, Denbow DM, Veit H P, Larsen C T (2000). Comparison of genetically engineered Aspergillus and canola in weanling pig diets. Journal of Animal Science, 78: 2868–2878

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Xiao.

About this article

Cite this article

Li, R., Zhao, J., Sun, C. et al. Biochemical properties, molecular characterizations, functions, and application perspectives of phytases. Front. Agric. China 4, 195–209 (2010). https://doi.org/10.1007/s11703-010-0103-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11703-010-0103-1

Keywords

Navigation