Skip to main content
Log in

Microbial community dynamics and electron transfer of a biocathode in microbial fuel cells

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Microbial community dynamics and its electron transfer process within a biocathode in a microbial fuel cell (MFC) were investigated in this study. The MFC was operated steadily over 400 days, and the power density reached 1.92 and 10.27 W/m3 based on the reduction of nitrate and oxygen, respectively. The six major groups of the clones that were categorized among the 26 clone types were Proteobacteria, Bacteroidetes, Actinobacteria, Planctomycetes, Firmicutes and uncultured bacteria. Microbial community dynamics showed that Betaproteobacteria was replaced by Gammaproteobacteria as the most abundant division among all the clone types with a percentage of 48.86% in the cathode compartment, followed by 20.45% of uncultured bacteria, 17.05% of Bacteroidetes, and others. Distinct oxidation and reduction peaks could be observed in the profiles of cathodic effluent during the cyclic and differential pulse voltammetry tests. It confirmed that nitrate and oxygen reduction in the cathode compartment could be significantly enhanced by the presence of microbes, which are able to excrete metabolites to assist the electron transfer process either in the anode or in the cathode compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. T. Angenent, K. Karim, M. H. Al-Dahhan, B. A. Wrenn and R. Domiguez-Espinosa, Trends Biotechnol., 22, 477 (2004).

    Article  CAS  Google Scholar 

  2. B. H. Kim, I. S. Chang and G. M. Gadd, Appl. Microbiol. Biot., 76, 485 (2007).

    Article  CAS  Google Scholar 

  3. B. E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete and K. Rabaey, Eviron. Sci. Technol., 40, 5181 (2006).

    Article  CAS  Google Scholar 

  4. K. Rabaey, W. Ossieur, M. Verhaege and W. Verstraete, Water Sci. Technol., 52, 515 (2005).

    CAS  Google Scholar 

  5. B. E. Rittmann, Trends Biotechnol., 24, 261 (2006).

    Article  CAS  Google Scholar 

  6. L. M. Tender, C. E. Reimers, H. A. Stecher, D. E. Holmes, D. R. Bond, D. A. Lowy, K. Pilobello, S. J. Fertig and D. R. Lovely, Nat. Biotechnol., 20, 821 (2002).

    CAS  Google Scholar 

  7. N. T. Trinh, J. H. Park and B. W. Kim, Korean J. Chem. Eng., 26, 748 (2009).

    Article  CAS  Google Scholar 

  8. S. Freguia, K. Rabaey, Z. Yuan and J. Keller, Water Res., 42, 1387 (2008).

    Article  CAS  Google Scholar 

  9. F. Zhao, F. Harnisch, U. Schrorder, F. Scholz, P. Bogdanoff and I. Herrmann, Eviron. Sci. Technol., 40, 5193 (2006).

    Article  CAS  Google Scholar 

  10. A. Bergel, D. Feron and A. Mollica, Electrochem. Commun., 7, 900 (2005).

    Article  CAS  Google Scholar 

  11. G. W. Chen, S. J. Choi, T. H. Lee, G. Y. Lee, J. W. Cha and C. W. Kim, Appl. Microbiol. Biot., 79, 379 (2008).

    Article  CAS  Google Scholar 

  12. P. Clauwaert, K. Rabaey, P. Aelterman, L. De Schamphelaire, T. H. Pham, P. Boeckx, N. Boon and W. Verstraete, Eviron. Sci. Technol., 41, 3354 (2007).

    Article  CAS  Google Scholar 

  13. P. Clauwaert, D. Van der Ha, N. Boon, K. Verbeken, M. Verhaege, K. Rabaey and W. Verstraete, Eviron. Sci. Technol., 41, 7564 (2007).

    Article  CAS  Google Scholar 

  14. S. Freguia, K. Rabaey, Z. Yuan and J. Keller, Electrochim. Acta, 53, 598 (2007).

    Article  CAS  Google Scholar 

  15. Z. He and L. T. Angenent, Electronal., 18, 2009 (2006).

    Article  CAS  Google Scholar 

  16. K. Rabaey, S. T. Read, P. Clauwaert, S. Freguia, P. L. Bond, L. L. Blackall and J. Keller ISME J., 2, 519 (2008).

    Article  CAS  Google Scholar 

  17. H. I. Park, J. S. Kim, D. K. Kim, Y. J. Choi and D. Pak, Enzyme Microb. Tech., 39, 453 (2006).

    Article  CAS  Google Scholar 

  18. J. A. Gralnick and D. K. Newman, Mol. Microbiol., 65, 1 (2007).

    Article  Google Scholar 

  19. R. A. Bullen, T. C. Arnot, J. B. Lakeman and F. C. Walsh, Biosens. Bioelectron., 21, 2015 (2006).

    CAS  Google Scholar 

  20. M. E. Hernandez and D. K. Newman, Cell Mol. Life Sci., 58, 1562 (2001).

    Article  CAS  Google Scholar 

  21. U. Schroder, Phys. Chem. Chem. Phys., 9, 2619 (2007).

    Article  Google Scholar 

  22. K. Rabaey, N. Boon, S. D. Siciliano, M. Verhaege and W. Verstraete, Appl. Environ. Microbiol., 70, 5373 (2004).

    Article  CAS  Google Scholar 

  23. A. J. Bard and L. R. Faulkner, Electrochemical method: Fundamentals and applications, 2nd Ed., Wiley, New York (2001).

    Google Scholar 

  24. V. Stewart, Biochem. Soc. T., 31, 1 (2003).

    Article  CAS  Google Scholar 

  25. H. K. White, C. E. Reimers, E. E. Cordes, G. F. Dilly and P. R. Girguis, ISME J., 3, 635 (2009).

    Article  Google Scholar 

  26. C. E. Reimers, P. Girguis, H. A. Stecher III, L. M. Tender, N. Ryckerlynck and P. Whaling, Geobiology, 4, 123 (2006).

    Article  CAS  Google Scholar 

  27. T. R. Thomsen, Y. Kong and P. H. Nielsen, FEMS Microbiol. Ecol., 60, 370 (2007).

    Article  CAS  Google Scholar 

  28. S. E. Hoeft, J. S. Blum, J. F. Stolz, F. R. Tabita, B. Witte, G. M. King, J. M. Santini and R. S. Oremland, Int. J. Syst. Evol. Micr., 57, 504 (2007).

    Article  CAS  Google Scholar 

  29. N. Fernandez, R. Sierra-Alvarez, J. A. Field, A. Ricardo and J. L. Sanz, Chemoshpere, 70, 462 (2008).

    Article  CAS  Google Scholar 

  30. T. Osaka, Y. Ebie, S. Tsuneda, A. Hiratal, N. Iwami and Y. Inamori, FEMS Microbiol. Ecol., 64, 494 (2008).

    Article  CAS  Google Scholar 

  31. D. Y. Sorokin, T. P. Tourova, E. Y. Bezsoudnova, A. Pol and G. Muyzer, Archives Microbiol., 187, 441 (2007).

    Article  CAS  Google Scholar 

  32. M. Labrenz, G. Jost, C. Pohl, S. Beckmann, W. Martens-Habbena and K. Jurgens, Appl. Environ. Microbiol., 71, 6664 (2005).

    Article  CAS  Google Scholar 

  33. K. Heylen, B. Vanparys, L. Wittebolle, W. Verstraete, N. Boon and P. De Vos, Appl. Environ. Microbiol., 72, 2637 (2006).

    Article  CAS  Google Scholar 

  34. D. A. Ravcheev, A. B. Rakhmaninova, A. A. Mironov and M. S. Gelfand, Mol. Biol., 39, 832 (2005).

    Article  CAS  Google Scholar 

  35. Y. A. Gorby, S. Yanina, J. S. McLean, K. M. Rosso, D. Moyles, A. Dohnalkova, T. J. Beveridge, I. S. Chang, B. H. Kim, K. S. Kim, D. E. Culley, S. B. Reed, M. F. Romine, D. A. Saffarini, E. A. Hill, L. Shi, D. A. Elias, D. W. Kennedy, G. Pinchuk, K. Watanabe, S. Ishii, B. Logan, K. H. Nealson and J. K. Fredrickson, Proc. Nat. Acad. Sci., 103, 11358 (2006).

    Article  CAS  Google Scholar 

  36. G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen and D. R. Lovley, Nature, 435, 1098 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Won Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, GW., Choi, SJ., Cha, JH. et al. Microbial community dynamics and electron transfer of a biocathode in microbial fuel cells. Korean J. Chem. Eng. 27, 1513–1520 (2010). https://doi.org/10.1007/s11814-010-0231-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0231-6

Key words

Navigation