Skip to main content

Advertisement

Log in

Mesothelioma Epidemiology, Carcinogenesis, and Pathogenesis

  • Malignant Mesothelioma
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

The incidence of mesothelioma has gone from almost none to the current 2500–3000 cases per year in the USA. This estimate is an extrapolation based on information available from the Surveillance, Epidemiology and End Results (SEER) Program that collects information on approximately 12% of the US population. Mesothelioma is a cancer that is linked to exposure to carcinogenic mineral fibers. Asbestos and erionite have a proven causative role; the possible role of other mineral fibers in causing mesothelioma is being investigated. Asbestos is considered the main cause of mesothelioma in the US and in the Western world. The capacity of asbestos to induce mesothelioma has been linked to its ability to cause the release of TNF-α (that promotes mesothelial cells survival), other cytokines and growth factors, and of mutagenic oxygen radicals from exposed mesothelial cells and nearby macrophages. Some investigators proposed that as a consequence of the regulations to prevent exposure and to forbid and/or limit the use of asbestos, the incidence of mesothelioma in the US (and in some European countries) should have started to decline before or around the year 2000, and sharply decline thereafter. Unfortunately, there are no data available yet to support this optimistic hypothesis. Simian virus 40 (SV40) infection and radiation exposure are additional causes, although their contribution to the overall incidence of mesothelioma is unknown. Recent data from several laboratories indicate that asbestos exposure and SV40 infection are co-carcinogens in causing mesothelioma in rodents and in causing malignant transformation of human mesothelial cells in tissue culture. An exciting new development comes from the discovery that genetic susceptibility to mineral fiber carcinogenesis plays a critical role in the incidence of this cancer in certain families. It is hoped that the identification of this putative mesothelioma gene will lead to novel mechanistically driven preventive and therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: •Of importance

  1. Bridda A, Padoan I, Mencarelli R, et al.: Peritoneal mesothelioma: a review. MedGenMed 2007;9:32

    Google Scholar 

  2. Becklake MR, Bagatin E, Neder JA: Asbestos-related diseases of the lungs and pleura: uses, trends and management over the last century. Int J Tuberc Lung Dis. 2007;11:356–369

    CAS  PubMed  Google Scholar 

  3. Robinson BW, Musk AW, Lake RA: Malignant mesothelioma. Lancet. 2005;366:397–408. doi:10.1016/S0140-6736(05)67025-0

    Article  CAS  PubMed  Google Scholar 

  4. Grondin SC, Sugarbaker DJ. Malignant mesothelioma of the pleural space. Oncology (Williston Park). 1999;13:919–926 .

    CAS  Google Scholar 

  5. Ismail-Khan R, Robinson LA, Williams CC Jr, et al. Malignant pleural mesothelioma: a comprehensive review. Cancer Control. 2006;13:255–263 .

    PubMed  Google Scholar 

  6. Carbone M, Kratzke RA, Testa JR. The pathogenesis of mesothelioma. Semin Oncol. 2002;29:2–17. doi:10.1053/sonc.2002.30227

    Article  CAS  PubMed  Google Scholar 

  7. Price B, Ware A. Mesothelioma trends in the United States: an update based on Surveillance, Epidemiology, and End Results Program data for 1973 through 2003. Am J Epidemiol. 2004;159:107–112. doi:10.1093/aje/kwh025

    Article  PubMed  Google Scholar 

  8. Robinson BW, Lake RA. Advances in malignant mesothelioma. N Engl J Med. 2005;353:1591–1603. doi:10.1056/NEJMra050152

    Article  CAS  PubMed  Google Scholar 

  9. Bianchi C, Bianchi T. Malignant mesothelioma: global incidence and relationship with asbestos. Ind Health. 2007; 45:379–387. doi:10.2486/indhealth.45.379

    Article  PubMed  Google Scholar 

  10. Carbone M, Rdzanek MA. Pathogenesis of malignant mesothelioma. Clin Lung Cancer 2004;5(Suppl 2):S46–S50

    Article  CAS  PubMed  Google Scholar 

  11. Carbone M, Emri S, Dogan AU, et al. A mesothelioma epidemic in Cappadocia: scientific developments and unexpected social outcomes. Nat Rev Cancer. 2007;7:147–154. doi:10.1038/nrc2068

    Article  CAS  PubMed  Google Scholar 

  12. Luo S, Liu X, Mu S, et al. Asbestos related diseases from environmental exposure to crocidolite in Da-yao, China. I. Review of exposure and epidemiological data. Occup Environ Med. 2003;60:35–41. doi:10.1136/oem.60.1.35

    Article  CAS  PubMed  Google Scholar 

  13. Hodgson JT, Darnton A. The quantitative risks of mesothelioma and lung cancer in relation to asbestos exposure. Ann Occup Hyg. 2000; 44:565–601 .

    CAS  PubMed  Google Scholar 

  14. Suzuki Y, Yuen SR, Ashley R. Short, thin asbestos fibers contribute to the development of human malignant mesothelioma: pathological evidence. Int J Hyg Environ Health. 2005;208:201–210. doi:10.1016/j.ijheh.2005.01.015

    Article  CAS  PubMed  Google Scholar 

  15. Yarborough CM. Chrysotile as a cause of mesothelioma: an assessment based on epidemiology. Crit Rev Toxicol. 2006;36:165–187. doi:10.1080/10408440500534248

    Article  CAS  PubMed  Google Scholar 

  16. Bernstein DM, Chevalier J, Smith P. Comparison of Calidria chrysotile asbestos to pure tremolite: final results of the inhalation biopersistence and histopathology examination following short-term exposure. Inhal Toxicol. 2005;17:427–449. doi:10.1080/08958370591002012

    Article  CAS  PubMed  Google Scholar 

  17. Powers A, Carbone M. The role of environmental carcinogens, viruses and genetic predisposition in the pathogenesis of mesothelioma. Cancer Biol Ther. 2002;1:348–353 .

    CAS  PubMed  Google Scholar 

  18. Bocchetta M, Di Resta I, Powers A, et al. Human mesothelial cells are unusually susceptible to simian virus 40-mediated transformation and asbestos cocarcinogenicity. Proc Natl Acad Sci U S A. 2000;97:10214–10219. doi:10.1073/pnas.170207097

    Article  CAS  PubMed  Google Scholar 

  19. Yang H, Bocchetta M, Kroczynska B, et al. TNF-alpha inhibits asbestos-induced cytotoxicity via a NF-kappaB-dependent pathway, a possible mechanism for asbestos-induced oncogenesis. Proc Natl Acad Sci U S A. 2006;103:10397–10402. doi:10.1073/pnas.0604008103

    Article  CAS  PubMed  Google Scholar 

  20. Choe N, Tanaka S, Xia W, et al. Pleural macrophage recruitment and activation in asbestos-induced pleural injury. Environ Health Perspect 1997; 105(5):1257–1260. doi:10.2307/3433543

    Article  CAS  PubMed  Google Scholar 

  21. Xu A, Zhou H, Yu DZ, et al. Mechanisms of the genotoxicity of crocidolite asbestos in mammalian cells: implication from mutation patterns induced by reactive oxygen species. Environ Health Perspect. 2002;110:1003–1008 .

    CAS  PubMed  Google Scholar 

  22. Shukla A, Gulumian M, Hei TK, et al. Multiple roles of oxidants in the pathogenesis of asbestos-induced diseases. Free Radic Biol Med. 2003;34:1117–1129. doi:10.1016/S0891-5849(03)00060-1

    Article  CAS  PubMed  Google Scholar 

  23. Liu Z, Klominek J. Chemotaxis and chemokinesis of malignant mesothelioma cells to multiple growth factors. Anticancer Res. 2004; 24:1625–1630 .

    CAS  PubMed  Google Scholar 

  24. Galffy G, Mohammed KA, Dowling PA, et al. Interleukin 8: an autocrine growth factor for malignant mesothelioma. Cancer Res. 1999;59:367–371 .

    CAS  PubMed  Google Scholar 

  25. Strizzi L, Catalano A, Vianale G, et al. Vascular endothelial growth factor is an autocrine growth factor in human malignant mesothelioma. J Pathol. 2001;193:468–475. doi:10.1002/path.824

    Article  CAS  PubMed  Google Scholar 

  26. Cacciotti P, Libener R, Betta P, et al. SV40 replication in human mesothelial cells induces HGF/Met receptor activation: a model for viral-related carcinogenesis of human malignant mesothelioma. Proc Natl Acad Sci U S A. 2001;98:12032–12037. doi:10.1073/pnas.211026798

    Article  CAS  PubMed  Google Scholar 

  27. Ramos-Nino ME, Timblin CR, Mossman BT. Mesothelial cell transformation requires increased AP-1 binding activity and ERK-dependent Fra-1 expression. Cancer Res. 2002; 62:6065–6069 .

    CAS  PubMed  Google Scholar 

  28. Murthy SS, Testa JR. Asbestos, chromosomal deletions, and tumor suppressor gene alterations in human malignant mesothelioma. J. Cell. Physiol. 1999; 180: 150–157. doi: 10.1002/(SICI)1097-4652(199908)180:2<150::AID-JCP2>3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  29. Altomare DA, Vaslet CA, Skele KL, et al. A mouse model recapitulating molecular features of human mesothelioma. Cancer Res. 2005; 65: 8090–8095. doi:10.1158/0008-5472.CAN-05-2312

    Article  CAS  PubMed  Google Scholar 

  30. Testa JR, Giordano A. SV40 and cell cycle perturbations in malignant mesothelioma. Semin. Cancer Biol. 2001; 11:31–38. doi:10.1006/scbi.2000.0344

    Article  CAS  PubMed  Google Scholar 

  31. Xiao GH, Gallagher R, Shetler J, et al. The NF2 tumor suppressor gene product, merlin, inhibits cell proliferation and cell cycle progression by repressing cyclin D1 expression. Mol. Cell. Biol. 2005; 25: 2384–2394. doi:10.1128/MCB.25.6.2384-2394.2005

    Article  CAS  PubMed  Google Scholar 

  32. Xiao GH, Beeser A, Chernoff J, Testa JR: p21-activated kinase links Rac/Cdc42 signaling to merlin. J. Biol. Chem. 2002;277: 883–886. doi:10.1074/jbc.C100553200

    Article  CAS  PubMed  Google Scholar 

  33. Poulikakos PI, Xiao GH, Gallagher R, et al. Re-expression of the tumor suppressor NF2/merlin inhibits invasiveness in mesothelioma cells and negatively regulates FAK. Oncogene 2006; 25: 5960–5968. doi:10.1038/sj.onc.1209587

    Article  CAS  PubMed  Google Scholar 

  34. Carbone M, Pass HI, Miele L, et al. New developments about the association of SV40 with human mesothelioma. Oncogene. 2003; 22:5173–5180. doi:10.1038/sj.onc.1206552

    Article  CAS  PubMed  Google Scholar 

  35. Pass HI, Bocchetta M, Carbone M. Evidence of an important role for SV40 in mesothelioma. Thorac Surg Clin. 2004;14:489–495 .

    Article  PubMed  Google Scholar 

  36. Cutrone R, Lednicky J, Dunn G, et al. Some oral poliovirus vaccines were contaminated with infectious SV40 after 1961. Cancer Res. 2005;6:10273–10279. doi:10.1158/0008-5472.CAN-05-2028

    Article  CAS  Google Scholar 

  37. Wong M, Pagano JS, Schiller JT, et al. New associations of human papillomavirus, Simian virus 40, and Epstein-Barr virus with human cancer. J Natl Cancer Inst. 2002;94(24):1832–1836 .

    CAS  PubMed  Google Scholar 

  38. López-Ríos F, Illei PB, Rusch V, et al. Evidence against a role for SV40 infection in human mesotheliomas and high risk of false-positive PCR results owing to presence of SV40 sequences in common laboratory plasmids. Lancet. 2004;364:1157–1166. doi:10.1016/S0140-6736(04)17102-X

    Article  PubMed  CAS  Google Scholar 

  39. Gazdar AF, Butel JS, Carbone M. SV40 and human tumours: myth, association or causality? Nat Rev Cancer. 2002; 2:957-964. doi:10.1038/nrc947

    Article  CAS  PubMed  Google Scholar 

  40. Shivapurkar N, Wiethege T, Wistuba II, et al. Presence of simian virus 40 sequences in malignant mesotheliomas and mesothelial cell proliferations. J Cell Biochem. 1999;76:181–188. doi: 10.1002/(SICI)1097-4644(20000201)76:2<181::AID-JCB2>3.0.CO;2-9

    Article  CAS  PubMed  Google Scholar 

  41. Carbone M, Rizzo P, Pass H. Simian virus 40: the link with human malignant mesothelioma is well established. Anticancer Res. 2000;20:875–877 .

    CAS  PubMed  Google Scholar 

  42. Bocchetta M, Eliasz S, De Marco MA, et al. The SV40 large T antigen-p53 complexes bind and activate the insulin-like growth factor-I promoter stimulating cell growth. Cancer Res. 2008; 68:1022–1029. doi:10.1158/0008-5472.CAN-07-5203

    Article  CAS  PubMed  Google Scholar 

  43. Foddis R, De Rienzo A, Broccoli D, et al. SV40 infection induces telomerase activity in human mesothelial cells. Oncogene. 2002;21:1434–1442. doi:10.1038/sj.onc.1205203

    Article  CAS  PubMed  Google Scholar 

  44. Bocchetta M, Miele L, Pass HI, Carbone M. Notch-1 induction, a novel activity of SV40 required for growth of SV40-transformed human mesothelial cells. Oncogene. 2003; 22: 81–89. doi:10.1038/sj.onc.1206097

    Article  CAS  PubMed  Google Scholar 

  45. Kroczynska B, Cutrone R, Bocchetta M, et al. Crocidolite asbestos and SV40 are cocarcinogens in human mesothelial cells and in causing mesothelioma in hamsters. Proc Natl Acad Sci U S A. 2006;103:14128–14133. doi:10.1073/pnas.0604544103

    Article  CAS  PubMed  Google Scholar 

  46. Robinson C, van Bruggen I, Segal A, et al. A novel SV40 TAg transgenic model of asbestos-induced mesothelioma: malignant transformation is dose dependent. Cancer Res. 2006;66:10786–10794. doi:10.1158/0008-5472.CAN-05-4668

    Article  CAS  PubMed  Google Scholar 

  47. Pietruska JR, Kane AB. SV40 oncoproteins enhance asbestos-induced DNA double-strand breaks and abrogate senescence in murine mesothelial cells. Cancer Res. 2007;67:3637–3645. doi:10.1158/0008-5472.CAN-05-3727

    Article  CAS  PubMed  Google Scholar 

  48. Saffiotti U: mesothelioma carcinogenesis:in vivo models. In: Pass HI, Vogelzang NJ, Carbone M (eds), malignant Mesothelioma. New York NY, Springer, 2005, pp 60.

    Google Scholar 

  49. Amin AM, Mason C, Rowe P. Diffuse malignant mesothelioma of the peritoneum following abdominal radiotherapy. Eur J Surg Oncol. 2001;27:214–215. doi:10.1053/ejso.2000.1024

    Article  CAS  PubMed  Google Scholar 

  50. Travis LB, Fosså SD, Schonfeld SJ, et al. Second cancers among 40,576 testicular cancer patients: focus on long-term survivors. J Natl Cancer Inst. 2005;97:1354–1365 .

    Article  PubMed  Google Scholar 

  51. Brown LM, Howard RA, Travis LB. The risk of secondary malignancies over 30 years after the treatment of non-Hodgkin lymphoma. Cancer. 2006;107:2741–2742. doi:10.1002/cncr.22309

    Article  PubMed  Google Scholar 

  52. Teta MJ, Lau E, Sceurman BK, et al. Therapeutic radiation for lymphoma: risk of malignant mesothelioma. Cancer. 2007;109:1432–1438. doi:10.1002/cncr.22526

    Article  PubMed  Google Scholar 

  53. Cavazza A, Travis LB, Travis WD et al. Post-irradiation malignant mesothelioma. Cancer. 1996;77:1379–1385. doi: 10.1002/(SICI)1097-0142(19960401)77:7<1379::AID-CNCR24>3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  54. Andersson M, Wallin H, Jönsson M, et al. Lung carcinoma and malignant mesothelioma in patients exposed to Thorotrast: incidence, histology and p53 status. Int J Cancer. 1995;63:330–336. doi:10.1002/ijc.2910630304

    Article  CAS  PubMed  Google Scholar 

  55. Comin CE, de Klerk NH, Henderson DW. Malignant mesothelioma: current conundrums over risk estimates and whither electron microscopy for diagnosis? Ultrastruct Pathol. 1997;21:315–320. doi:10.3109/01913129709021929

    Article  CAS  PubMed  Google Scholar 

  56. Beck AK, Pass HI, Carbone M, Yang H. Ranpirnase as a potential antitumor ribonuclease treatment for mesothelioma and other malignancies. Future Oncol. 2008;4:341–349. doi:10.2217/14796694.4.3.341

    Article  CAS  PubMed  Google Scholar 

  57. Kaufman AJ, Pass HI. Current concepts in malignant pleural mesothelioma. Expert Rev Anticancer Ther. 2008;8:293–303. doi:10.1586/14737140.8.2.293

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Carbone MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Testa, J.R. & Carbone, M. Mesothelioma Epidemiology, Carcinogenesis, and Pathogenesis. Curr. Treat. Options in Oncol. 9, 147–157 (2008). https://doi.org/10.1007/s11864-008-0067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11864-008-0067-z

Keywords

Navigation