Skip to main content

Advertisement

Log in

Novel Genetic Mechanisms for Aortic Aneurysms

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Aortic aneurysms occur in the thoracic and abdominal sections of the aorta and are a deadly late-age-at-onset disease with complex pathobiology. Currently, the number of published genome-wide analyses including microarray-based expression profiling, DNA linkage studies, and genetic association studies is still limited and it is difficult to make generalizations about the disease pathogenesis or genetic risk factors contributing to aortic aneurysms, but it appears that thoracic aortic aneurysms differ in many ways from abdominal aortic aneurysms. Characterization of diseases at the molecular level is likely to lead to more accurate diagnoses and the use of “genomic nosology” of disease. The biggest future challenge will be to translate the genomic information to the clinic and improve our understanding of the disease processes, help us to develop better diagnostic tools, and lead to the design of new ways to manage aortic aneurysms in the era of personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Beckman JA: Aortic aneurysms: pathophysiology, epidemiology, and prognosis. In Vascular Medicine. Edited by Creager MA, Dzau VJ, Loscalzo J. Philadelphia: Saunders Elsevier; 2006:543–559.

    Google Scholar 

  2. Beckman JA: Aortic aneurysms: clinical evaluation. In Vascular Medicine. Edited by Creager MA, Dzau VJ, Loscalzo J. Philadelphia: Saunders Elsevier; 2006:560–569.

    Google Scholar 

  3. Shantikumar S, Ajjan R, Porter KE, Scott DJ: Diabetes and the abdominal aortic aneurysm. Eur J Vasc Endovasc Surg 2010, 39:200–207.

    Article  CAS  PubMed  Google Scholar 

  4. Tromp G, Kuivaniemi H: Developments in genomics to improve understanding, diagnosis and management of aneurysms and peripheral artery disease. Eur J Vasc Endovasc Surg 2009, 38:676–682.

    Article  CAS  PubMed  Google Scholar 

  5. Kuivaniemi H, Platsoucas CD, Tilson MD 3rd: Aortic aneurysms: an immune disease with a strong genetic component. Circulation 2008, 117:242–252.

    Article  PubMed  Google Scholar 

  6. Majesky MW: Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 2007, 27:1248–1258.

    Article  CAS  PubMed  Google Scholar 

  7. Ruddy JM, Jones JA, Spinale FG, Ikonomidis JS: Regional heterogeneity within the aorta: relevance to aneurysm disease. J Thorac Cardiovasc Surg 2008, 136:1123–1130.

    Article  PubMed  Google Scholar 

  8. Dietz HC: TGF-beta in the pathogenesis and prevention of disease: a matter of aneurysmic proportions. J Clin Invest 2010, 120:403–407.

    CAS  PubMed  Google Scholar 

  9. Wiegreffe C, Christ B, Huang R, Scaal M: Remodeling of aortic smooth muscle during avian embryonic development. Dev Dyn 2009, 238:624–631.

    Article  PubMed  Google Scholar 

  10. Haimovici H, Maier N: Fate of aortic homografts in canine atherosclerosis. 3. Study of fresh abdominal and thoracic aortic implants into thoracic aorta: role of tissue susceptibility in atherogenesis. Arch Surg 1964, 89:961–969.

    CAS  PubMed  Google Scholar 

  11. Mandell VS, Jaques PF, Delany DJ, Oberheu V: Persistent sciatic artery: clinical, embryologic, and angiographic features. AJR Am J Roentgenol 1985, 144:245–249.

    CAS  PubMed  Google Scholar 

  12. Yamaguchi M, Mii S, Kai T, et al.: Intermittent claudication associated with persistent sciatic artery: report of two cases. Surg Today 1997, 27:863–867.

    Article  CAS  PubMed  Google Scholar 

  13. Norman PE, Powell JT: Site specificity of aneurysmal disease. Circulation 2010, 121:560–568.

    Article  CAS  PubMed  Google Scholar 

  14. Mauro MA, Jaques PF, Moore M: The popliteal artery and its branches: embryologic basis of normal and variant anatomy. AJR Am J Roentgenol 1988, 150:435–437.

    CAS  PubMed  Google Scholar 

  15. Henriques T, Zhang X, Yiannikouris FB, et al.: Androgen increases AT1a receptor expression in abdominal aortas to promote angiotensin II-induced AAAs in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2008, 28:1251–1256.

    Article  CAS  PubMed  Google Scholar 

  16. Straface E, Vona R, Gambardella L, et al.: Cell sex determines anoikis resistance in vascular smooth muscle cells. FEBS Lett 2009, 583:3448–3454.

    Article  CAS  PubMed  Google Scholar 

  17. Weintraub NL: Understanding abdominal aortic aneurysm. N Engl J Med 2009, 361:1114–1116.

    Article  CAS  PubMed  Google Scholar 

  18. von Meyenburg H: Ueber spontane Aortenruptur bei zwei Bruedern. Schwiez Med Wschr 1939, 20:976–979.

    Google Scholar 

  19. Hanley WB, Jones NB: Familial dissecting aortic aneurysm. A report of three cases within two generations. Br Heart J 1967, 29:852–858.

    Article  CAS  PubMed  Google Scholar 

  20. • Milewicz DM, Guo DC, Tran-Fadulu V, et al.: Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction. Annu Rev Genomics Hum Genet 2008, 9:283–302. This is an excellent review of the genetics of TAADs.

    Article  CAS  PubMed  Google Scholar 

  21. Biddinger A, Rocklin M, Coselli J, Milewicz DM: Familial thoracic aortic dilatations and dissections: a case control study. J Vasc Surg 1997, 25:506–511.

    Article  CAS  PubMed  Google Scholar 

  22. Hasham SN, Lewin MR, Tran VT, et al.: Nonsyndromic genetic predisposition to aortic dissection: a newly recognized, diagnosable, and preventable occurrence in families. Ann Emerg Med 2004, 43:79–82.

    Article  PubMed  Google Scholar 

  23. Albornoz G, Coady MA, Roberts M, et al.: Familial thoracic aortic aneurysms and dissections—incidence, modes of inheritance, and phenotypic patterns. Ann Thorac Surg 2006, 82:1400–1405.

    Article  PubMed  Google Scholar 

  24. •• Guo DC, Pannu H, Tran-Fadulu V, et al.: Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet 2007, 39:1488–1493. This study mapped the seventh TAAD locus to 10q22-q24 in families with an autosomal dominant inheritance pattern for TAAD combined with livedo reticularis and iris flocculi and identified mutations in the gene for smooth muscle alpha-actin located in the candidate interval.

    Article  CAS  PubMed  Google Scholar 

  25. Loeys BL, Schwarze U, Holm T, et al.: Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med 2006, 355:788–798.

    Article  CAS  PubMed  Google Scholar 

  26. Matyas G, Arnold E, Carrel T, et al.: Identification and in silico analyses of novel TGFBR1 and TGFBR2 mutations in Marfan syndrome-related disorders. Hum Mutat 2006, 27:760–769.

    Article  CAS  PubMed  Google Scholar 

  27. Boddy AM, Lenk GM, Lillvis JH, et al.: Basic research studies to understand aneurysm disease. Drug News Perspect 2008, 21:142–148.

    CAS  PubMed  Google Scholar 

  28. Kuivaniemi H, Boddy AM, Lillvis JH, et al.: Abdominal aortic aneurysms are deep, deadly and genetic. In Aortic Aneurysms, New Insights Into an Old Problem. Edited by Sakalihasan N, Kuivaniemi H, Michel JB. Liège, Belgium: Liège University Press; 2008:299–323.

    Google Scholar 

  29. Golledge J, Muller J, Daugherty A, Norman P: Abdominal aortic aneurysm: pathogenesis and implications for management. Arterioscler Thromb Vasc Biol 2006, 26:2605–2613.

    Article  CAS  PubMed  Google Scholar 

  30. Wahlgren CM, Larsson E, Magnusson PK, et al.: Genetic and environmental contributions to abdominal aortic aneurysm development in a twin population. J Vasc Surg 2010, 51:3–7.

    Article  PubMed  Google Scholar 

  31. Shibamura H, Olson JM, van Vlijmen-Van Keulen C, et al.: Genome scan for familial abdominal aortic aneurysm using sex and family history as covariates suggests genetic heterogeneity and identifies linkage to chromosome 19q13. Circulation 2004, 109:2103–2108.

    Article  PubMed  Google Scholar 

  32. Elmore JR, Obmann MA, Kuivaniemi H, et al.: Identification of a genetic variant associated with abdominal aortic aneurysms on chromosome 3p12.3 by genome wide association. J Vasc Surg 2009, 49:1525–1531.

    Article  PubMed  Google Scholar 

  33. •• Helgadottir A, Thorleifsson G, Magnusson KP, et al.: The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet 2008, 40:217–224. This study was the first large genetic association study for abdominal aortic aneurysms. It demonstrated an association with a polymorphism on chromosome 9p21 and both AAAs and intracranial aneurysms. Interestingly, the same polymorphism had also been shown to be associated with myocardial infarction.

    Article  CAS  PubMed  Google Scholar 

  34. Holdt LM, Beutner F, Scholz M, et al.: ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol 2010, 30:620–627.

    Article  CAS  PubMed  Google Scholar 

  35. •• Visel A, Zhu Y, May D, et al.: Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature 2010, 464:409–412. This study provides the first indication of the mechanism by which the 9p21 risk variants exert their effect. It provides a clear role for the long noncoding RNA gene ANRIL in vascular SMC biology.

    Article  CAS  PubMed  Google Scholar 

  36. González P, Díez-Juan A, Coto E, et al.: A single-nucleotide polymorphism in the human p27kip1 gene (-838C>A) affects basal promoter activity and the risk of myocardial infarction. BMC Biol 2004, 2:5.

    Article  PubMed  Google Scholar 

  37. Rodríguez I, Coto E, Reguero JR, et al.: Role of the CDKN1A/p21, CDKN1C/p57, and CDKN2A/p16 genes in the risk of atherosclerosis and myocardial infarction. Cell Cycle 2007, 6:620–625.

    PubMed  Google Scholar 

  38. Baxter BT, Terrin MC, Dalman RL: Medical management of small abdominal aortic aneurysms. Circulation 2008, 117:1883–1889.

    Article  PubMed  Google Scholar 

  39. Habashi JP, Judge DP, Holm TM, et al.: Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 2006, 312:117–121.

    Article  CAS  PubMed  Google Scholar 

  40. Brooke BS, Habashi JP, Judge DP, et al.: Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N Engl J Med 2008, 358:2787–2795.

    Article  CAS  PubMed  Google Scholar 

  41. ClinicalTrials.gov: Comparison of Two Medications Aimed at Slowing Aortic Root Enlargement in Individuals With Marfan Syndrome—Pediatric Heart Network. Available at http://www.clinicaltrials.gov/ct2/show/NCT00429364. Accessed February 8, 2010.

  42. Radonic T, de Witte P, Baars MJ, et al.: Losartan therapy in adults with Marfan syndrome: study protocol of the multi-center randomized controlled COMPARE trial. Trials 2010, 11:3.

    Article  PubMed  Google Scholar 

  43. Bown MJ, Braund PS, Thompson J, et al.: Association between the coronary artery disease risk locus on chromosome 9p21.3 and abdominal aortic aneurysm. Circ Cardiovasc Genet 2008, 1:39–42

    Article  PubMed  Google Scholar 

  44. Lenk GM, Tromp G, Weinsheimer S, et al.: Whole genome expression profiling reveals a significant role for immune function in human abdominal aortic aneurysms. BMC Genomics 2007, 8:237.

    Article  PubMed  Google Scholar 

  45. Choke E, Cockerill GW, Laing K, et al.: Whole genome-expression profiling reveals a role for immune and inflammatory response in abdominal aortic aneurysm rupture. Eur J Vasc Endovasc Surg 2009, 37:305–310.

    Article  CAS  PubMed  Google Scholar 

  46. Giusti B, Rossi L, Lapini I, et al.: Gene expression profiling of peripheral blood in patients with abdominal aortic aneurysm. Eur J Vasc Endovasc Surg 2009, 38:104–112.

    Article  CAS  PubMed  Google Scholar 

  47. Nischan J, Gatalica Z, Curtis M, et al.: Binding sites for ETS family of transcription factors dominate the promoter regions of differentially expressed genes in abdominal aortic aneurysms. Circ Cardiovasc Genet 2009, 2:565–572.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Tromp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tromp, G., Kuivaniemi, H., Hinterseher, I. et al. Novel Genetic Mechanisms for Aortic Aneurysms. Curr Atheroscler Rep 12, 259–266 (2010). https://doi.org/10.1007/s11883-010-0111-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-010-0111-x

Keywords

Navigation