Skip to main content

Advertisement

Log in

Fat-induced liver insulin resistance

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

In vitro studies have established that free fatty acids (FFAs) are important regulators of hepatic glucose metabolism. FFAs can increase hepatic glucose release by increasing the amount and activity of glucose-6-phosphatase and multiple gluconeogenic enzymes. Elevated FFAs can also potentially decrease hepatic glucose uptake by decreasing hepatic glucokinase activity. In vivo studies in both animals and humans have shown a close correlation between changes in plasma FFAs and endogenous glucose production (EGP). Intervention studies have established that changes in plasma FFAs are accompanied by changes in the relative contribution of gluconeogenesis and glycogenolysis to EGP. The effects of a change in FFAs on EGP itself are more evident when compensatory changes in insulin secretion are prevented or when insulin secretion is impaired (eg, diabetes mellitus). The effects of elevated FFAs on splanchnic glucose uptake are less clear, in that they appear to have no effect in nondiabetic humans and may impair uptake in people with type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Gorden ES: Nonesterified fatty acids in blood of obese and lean subjects. Am J Clin Nutr 1960, 8:740–747.

    Google Scholar 

  2. Reaven GM: Syndrome X: 6 years later. J Int Med 1994, 736:13–22.

    CAS  Google Scholar 

  3. Reaven GM, Hollenbeck C, Jeng CY, et al.: Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 hours in patients with NIDDM. Diabetes 1988, 37:1020–1024.

    Article  PubMed  CAS  Google Scholar 

  4. Jouven X, Charles MA, Desnos M, Ducimetiere P: Circulating nonesterified fatty acid level as a predictive risk factor for sudden death in the population. Circulation 2001, 104:756–761.

    PubMed  CAS  Google Scholar 

  5. Randle PJ, Hales CN, Garland PB, Newsholm EA: The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963, 1:7285–7289.

    Google Scholar 

  6. Boden G, Chen X, Ruiz J, et al.: Mechanisms of fatty acidinduced inhibition of glucose uptake. J Clin Invest 1994, 93:2438–2446.

    PubMed  CAS  Google Scholar 

  7. Kelley DE, Mokan M, Simoneau J-A, Mandarino LJ: Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J Clin Invest 1993, 92:91–98.

    PubMed  CAS  Google Scholar 

  8. Tippett PS, Neet KE: Specific inhibition of glucokinase by long chain acyl coenzymes A below the critical micelle concentration. J Biol Chem 1982, 257:12839–12845.

    PubMed  CAS  Google Scholar 

  9. Hue L, Maisin L, Rider MH: Palmitate inhibits liver glycolysis: involvement of fructose 2,6-biophosphate in the glucose/ fatty acid cycle. Biochem J 1988, 251:541–545.

    PubMed  CAS  Google Scholar 

  10. Chatelain F, Pégorier J-P, Minassian C, et al.: Development and regulation of glucose-6-phosphatase gene expression in rat liver, intestine, and kidney: in vivo and in vitro studies in cultured fetal hepatocytes. Diabetes 1998, 47:882–889.

    Article  PubMed  CAS  Google Scholar 

  11. Massillon D, Barzilai N, Hawkins M, et al.: Induction of hepatic glucose-6-phosphatase gene expression by lipid infusion. Diabetes 1997, 46:153–157.

    Article  PubMed  CAS  Google Scholar 

  12. Commerford SR, Ferniza JB, Bizeau ME, et al.: Diets enriched in sucrose or fat increase gluconeogenesis and G-6-Pase but not basal glucose production in rats. Am J Physiol Endocrinol Metab 2002, 283:E545-E555.

    PubMed  CAS  Google Scholar 

  13. Blumental SA: Stimulation of gluconeogenesis by palmitic acid in rat hepatocytes: evidence that this effect can be dissociated from the provision of reducing equivalents. Metabolism 1983, 32:971–976.

    Article  Google Scholar 

  14. Williamson JR, Kreisberg RA, Felts PW: Mechanism for stimulation of gluconeogenesis by fatty acids in perfused rat liver. Proc Natl Acad Sci USA 1966, 56:247–254.

    Article  PubMed  CAS  Google Scholar 

  15. Lam TK, Yoshii H, Haber CA, et al.: Free fatty acid-induced hepatic insulin resistance: a potential role for protein kinase C-delta. Am J Physiol Endocrinol Metab 2002, 283:E682-E691.

    PubMed  CAS  Google Scholar 

  16. Rizza RA, Mandarino LJ, Gerich JE: Dose-response characteristics for effects of insulin on production and utilization of glucose in man. Am J Physiol 1981, 240:E630-E639.

    PubMed  CAS  Google Scholar 

  17. Jensen MD, Caruso M, Heiling V, Miles JM: Insulin regulation of lipolysis in nondiabetic and IDDM subjects. Diabetes 1989, 38:1595–1601.

    Article  PubMed  CAS  Google Scholar 

  18. Paul P, Issekutz B Jr, Miller HI: Interrelationship of free fatty acids and glucose metabolism in the dog. Am J Physiol 1966, 211:1313–1320.

    PubMed  CAS  Google Scholar 

  19. Rebrin K, Steil GM, Getty L, Bergman RN: Free fatty acid as a link in the regulation of hepatic glucose output by peripheral insulin. Diabetes 1995, 44:1038–1045.

    Article  PubMed  CAS  Google Scholar 

  20. Kelley D, Mokan M, Veneman T: Impaired postprandial glucose utilization in non-insulin-dependent diabetes mellitus. Metabolism 1994, 43:1549–1557.

    Article  PubMed  CAS  Google Scholar 

  21. Chen X, Iqbal N, Boden G: The effects of free fatty acids on gluconeogenesis and glycogenolysis in normal subjects. J Clin Invest 1999, 103:365–372.

    PubMed  CAS  Google Scholar 

  22. Meek SE, Nair KS, Jensen MD: Insulin regulation of regional free fatty acid metabolism. Diabetes 1999, 48:10–14.

    Article  PubMed  CAS  Google Scholar 

  23. Ryysy L, Häkkinen A-M, Goto T, et al.: Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes 2000, 49:749–758.

    Article  PubMed  CAS  Google Scholar 

  24. Barzilai N, She L, Liu B-Q, et al.: Surgical removal of visceral fat reverses hepatic insulin resistance. Diabetes 1999, 48:94–98.

    Article  PubMed  CAS  Google Scholar 

  25. Miyazaki Y, Glass L, Triplitt C, et al.: Abdominal fat distribution and peripheral and hepatic insulin resistance in type 2 diabetes mellitus. Am J Physiol Endocrinol Metab 2002, 283:E1135-E1143.

    PubMed  CAS  Google Scholar 

  26. Carey DG, Jenkins AB, Campbell LV, et al.: Abdominal fat and insulin resistance in normal and overweight women: direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM. Diabetes 1996, 45:633–638.

    Article  PubMed  CAS  Google Scholar 

  27. Reaven GM, Change H, Ho H, et al.: Lowering of plasma glucose in diabetic rats by antilipolytic agents. Am J Physiol Endocrinol Metab 1988, 254:E23-E30.

    CAS  Google Scholar 

  28. Mittelman SD, Bergman RN: Inhibition of lipolysis causes suppression of endogenous glucose production independent of changes in insulin. Am J Physiol Metab 2000, 279:E630-E637.

    CAS  Google Scholar 

  29. Ader M, Bergman RN: Peripheral effects of insulin dominate suppression of fasting hepatic glucose production. Am J Physiol 1990, 258:E1020-E1032.

    PubMed  CAS  Google Scholar 

  30. Sindelar DK, Chu CA, Rohlie M, et al.: The role of fatty acids in mediating the effects of peripheral insulin on hepatic glucose production in the conscious dog. Diabetes 1997, 46:187–196.

    Article  PubMed  CAS  Google Scholar 

  31. Prager R, Wallace P, Olefsky JM: Direct and indirect effects of insulin to inhibit hepatic glucose output in obese subjects. Diabetes 1987, 36:607–611.

    Article  PubMed  CAS  Google Scholar 

  32. Chu CA, Sherck SM, Igawa K, et al.: Effects of free fatty acids on hepatic glycogenolysis and gluconeogenesis in conscious dogs. Am J Physiol Endocrinol Metab 2001, 282:E402-E411. These data provide an interesting contrast to those from Boden et al. [45•], in that they indicate that elevated FFAs enhance glucose-induced suppression of glycogenesis. Taken together, Chu et al. [32•] and Boden et al. [45•] suggest a differential effect of FFAs on glucose- and insulin-induced regulation of glycogenolysis.

    Google Scholar 

  33. Shah P, Vella A, Basu A, et al.: Effects of free fatty acids and glycerol on splanchnic glucose metabolism and insulin extraction in nondiabetic humans. Diabetes 2002, 51:301–310.

    Article  PubMed  CAS  Google Scholar 

  34. Stingl H, Krssak M, Krebs M, et al.: Lipid-dependent control of hepatic glycogen stores in healthy humans. Diabetologia 2001, 44:48–54.

    Article  PubMed  CAS  Google Scholar 

  35. Roden M, Stingl H, Chandramouli V, et al.: Effects of free fatty acid elevation on postabsorptive endogenous glucose production and gluconeogenesis in humans. Diabetes 2000, 49:701–707.

    Article  PubMed  CAS  Google Scholar 

  36. Boden G, Jadali F: Effect of lipids on basal carbohydrate metabolism in normal men. Diabetes 1991, 40:686–692.

    Article  PubMed  CAS  Google Scholar 

  37. Jahoor F, Peters EJ, Wolfe RR: The relationship between gluconeogenic substrate supply and glucose production in humans. Am J Physiol 1990, 258:E288-E296.

    PubMed  CAS  Google Scholar 

  38. Ekberg K, Landau BR, Wajngot A, et al.: Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes 1999, 48:292–298.

    Article  PubMed  CAS  Google Scholar 

  39. Stumboll M, Chintalapudi U, Perriello G, et al.: Uptake and release of glucose by the human kidney. J Clin Invest 1995, 96:2528–2533.

    Google Scholar 

  40. Cersosimo E, Judd RL, Miles JM: Insulin regulation of renal glucose metabolism in conscious dogs. J Clin Invest 1994, 93:2584–2589.

    Article  PubMed  CAS  Google Scholar 

  41. Moller N, Rizza RA, Ford GC, Nair KS: Assessment of postabsorptive renal glucose metabolism in humans with multiple glucose tracers. Diabetes 2001, 50:745–751.

    Article  Google Scholar 

  42. Boden G, Chen X, Capulong E, Mozzoli M: Effects of free fatty acids on gluconeogenesis and autoregulation of glucose production in type 2 diabetes. Diabetes 2001, 50:810–816.

    Article  PubMed  CAS  Google Scholar 

  43. Clore JN, Glickman PS, Nestler JE, Blackard WG: In vivo evidence for hepatic autoregulation during FFA-stimulated gluconeogenesis in normal humans. Am J Physiol 1991, 261:E425-E429.

    PubMed  CAS  Google Scholar 

  44. Clore JN, Glickman PS, Helm ST, et al.: Evidence for dual control mechanism regulating hepatic glucose output in nondiabetic men. Diabetes 1991, 40:1033–1040.

    Article  PubMed  CAS  Google Scholar 

  45. Boden G, Cheung P, Stein TP, et al.: FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis. Am J Physiol Endocrinol Metab 2002, 283:E12-E19. These data indicate that elevated FFAs impair insulin-induced suppression of EGP by increasing glycogenolysis rather than glyconeogenesis.

    PubMed  CAS  Google Scholar 

  46. Saloranta C, Koivisto V, Widen E, et al.: Contribution of muscle and liver to glucose-fatty acid cycle in humans. Am J Physiol 1993, 264:E599-E605.

    PubMed  CAS  Google Scholar 

  47. Bevilacqua S, Bonadonna R, Buzzigoli G, et al.: Acute elevation of free fatty acid levels leads to hepatic insulin resistance in obese subjects. Metabolism 1987, 36:502–506.

    Article  PubMed  CAS  Google Scholar 

  48. Ferrannini E, Barrett EJ, Bevilacqua S, DeFronzo RA: Effect of free fatty acids on glucose production and utilization in man. JClin Invest 1983, 72:1737–1747.

    CAS  Google Scholar 

  49. Landau BR, Wahren J, Chandramouli V, et al.: Use of 2H2O for estimating rates of gluconeogenesis: application to the fasted state. J Clin Invest 1995, 95:172–178.

    PubMed  CAS  Google Scholar 

  50. Bajaj M, Berria R, Pratipanawatr T, et al.: Free fatty acidinduced peripheral insulin resistance augments splanchnic glucose uptake in healthy humans. Am J Physiol Endocrinol Metab 2002, 283:E346-E352.

    PubMed  CAS  Google Scholar 

  51. Rigalleau V, Beylot M, Pachiaudi C, et al.: Mechanisms of glucose intolerance during triglyceride infusion. Am J Physiol Endocrinol Metab 1998, 38:E641-E648.

    Google Scholar 

  52. Rigalleau V, Binnert C, Minehira K, et al.: In normal men, free fatty acids reduce peripheral but not splanchnic glucose uptake. Diabetes 2001, 50:727–732.

    Article  PubMed  CAS  Google Scholar 

  53. Tomita T, Yamasaki T, Kubota M, et al.: High plasma free fatty acids decrease splanchnic glucose uptake in patients with non-insulin-dependent diabetes mellitus. Endocr J 1998, 45:165–173.

    PubMed  CAS  Google Scholar 

  54. Bajaj M, Pratipanawatr T, Berria R, et al.: Free fatty acids reduce splanchnic and peripheral glucose uptake in patients with type 2 diabetes. Diabetes 2002, 51:3043–3048.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, P., Basu, A. & Rizza, R. Fat-induced liver insulin resistance. Curr Diab Rep 3, 214–218 (2003). https://doi.org/10.1007/s11892-003-0066-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-003-0066-1

Keywords

Navigation