Skip to main content
Log in

The role of FOXO in the regulation of metabolism

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Forkhead box O (FOXO) transcription factors play an important role in modulating metabolic functions. FOXO is regulated by several modifications, but one of the most critical is phosphorylation and nuclear exclusion by Akt. Given the impact of insulin signaling on Akt-mediated phosphorylation of FOXO and the relatively high expression of Foxo1 in insulin-responsive tissues, this transcription factor is highly poised to regulate energy metabolism. When nutrient and insulin levels are low, Foxo1 promotes expression of gluconeogenic enzymes. Conversely, in the fed state, insulin levels rise and stimulate uptake of glucose primarily into skeletal muscle and other organs, including adipose tissue. Under certain pathophysiologic conditions, including insulin resistance, negative signaling to Foxo1 is compromised. Further clarification of the role of Foxo1 in insulinresponsive tissues will strengthen our understanding and allow us to better combat insulin resistance and diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Liu Y, Dentin R, Chen D, et al.: A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 2008, 456:269–273.

    Article  PubMed  CAS  Google Scholar 

  2. Matsumoto M, Pocai A, Rossetti L, et al.: Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor foxo1 in liver. Cell Metab 2007, 6:208–216.

    Article  PubMed  CAS  Google Scholar 

  3. Nakae J, Cao Y, Daitoku H, et al.: The LXXLL motif of murine forkhead transcription factor FoxO1 mediates Sirt1-dependent transcriptional activity. J Clin Invest 2006, 116:2473–2483.

    PubMed  CAS  Google Scholar 

  4. Qu S, Altomonte J, Perdomo G, et al.: Aberrant Forkhead box O1 function is associated with impaired hepatic metabolism. Endocrinology 2006, 147:5641–5652.

    Article  PubMed  CAS  Google Scholar 

  5. Li X, Monks B, Ge Q, Birnbaum MJ: Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature 2007, 447:1012–1016.

    Article  PubMed  CAS  Google Scholar 

  6. Zhang W, Patil S, Chauhan B, et al.: FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J Biol Chem 2006, 281:10105–10117.

    Article  PubMed  CAS  Google Scholar 

  7. Matsumoto M, Han S, Kitamura T, Accili D: Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J Clin Invest 2006, 116:2464–2472.

    PubMed  CAS  Google Scholar 

  8. Altomonte J, Richter A, Harbaran S, et al.: Inhibition of Foxo1 function is associated with improved fasting glycemia in diabetic mice. Am J Physiol Endocrinol Metab 2003, 285:E718–E728.

    PubMed  CAS  Google Scholar 

  9. Samuel VT, Choi CS, Phillips TG, et al.: Targeting foxo1 in mice using antisense oligonucleotide improves hepatic and peripheral insulin action. Diabetes 2006, 55:2042–2050.

    Article  PubMed  CAS  Google Scholar 

  10. Dong XC, Copps KD, Guo S, et al.: Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab 2008, 8:65–76.

    Article  PubMed  CAS  Google Scholar 

  11. Kubota N, Kubota T, Itoh S, et al.: Dynamic functional relay between insulin receptor substrate 1 and 2 in hepatic insulin signaling during fasting and feeding. Cell Metab 2008, 8:49–64.

    Article  PubMed  CAS  Google Scholar 

  12. Housley MP, Rodgers JT, Udeshi ND, et al.: O-GlcNAc regulates FoxO activation in response to glucose. J Biol Chem 2008, 283:16283–16292.

    Article  PubMed  CAS  Google Scholar 

  13. Housley MP, Udeshi ND, Rodgers JT, et al.: A PGC-1{alpha}-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose. J Biol Chem 2009, 284:5148–5157.

    Article  PubMed  CAS  Google Scholar 

  14. Kamagate A, Qu S, Perdomo G, et al.: FoxO1 mediates insulin-dependent regulation of hepatic VLDL production in mice. J Clin Invest 2008, 118:2347–2364.

    PubMed  CAS  Google Scholar 

  15. Altomonte J, Cong L, Harbaran S, et al.: Foxo1 mediates insulin action on apoC-III and triglyceride metabolism. J Clin Invest 2004, 114:1493–1503.

    PubMed  CAS  Google Scholar 

  16. Gross DN, van den Heuvel AP, Birnbaum MJ: The role of FoxO in the regulation of metabolism. Oncogene 2008, 27:2320–2336.

    Article  PubMed  CAS  Google Scholar 

  17. Kitamura T, Nakae J, Kitamura Y, et al.: The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J Clin Invest 2002, 110:1839–1847.

    PubMed  CAS  Google Scholar 

  18. Essers M, Weijzen S, De Vries-Smits A, et al.: FOXO transcription factor activation by oxidative stress mediated by the small TPase Ral and JNK. EMBO J 2004, 23:4802–4812.

    Article  PubMed  CAS  Google Scholar 

  19. Kawamori D, Kajimoto Y, Kaneto H, et al.: Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic transcription factor PDX-1 through activation of c-Jun NH(2)-terminal kinase. Diabetes 2003, 52:2896–2904.

    Article  PubMed  CAS  Google Scholar 

  20. Kawamori D, Kaneto H, Nakatani Y, et al.: The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J Biol Chem 2006, 281:1091–1098.

    Article  PubMed  CAS  Google Scholar 

  21. Salih DA, Brunet A: FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol 2008, 20:126–136.

    Article  PubMed  CAS  Google Scholar 

  22. Kitamura YI, Kitamura T, Kruse JP, et al.: FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab 2005, 2:153–163.

    Article  PubMed  CAS  Google Scholar 

  23. Daitoku H, Hatta M, Matsuzaki H, et al.: Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity. Proc Natl Acad Sci U S A 2004, 101:10042–10047.

    Article  PubMed  CAS  Google Scholar 

  24. Rulifson IC, Karnik SK, Heiser PW, et al.: Wnt signaling regulates pancreatic beta cell proliferation. Proc Natl Acad Sci U S A 2007, 104:6247–6252.

    Article  PubMed  CAS  Google Scholar 

  25. Essers M, de Vries-Smits LM, Barker N, et al.: Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 2005, 308:1181–1184.

    Article  PubMed  CAS  Google Scholar 

  26. Hoogeboom D, Essers M, Polderman PE, et al.: Interaction of FOXO with beta-catenin inhibits beta-catenin/T cell factor activity. J Biol Chem 2008, 283:9224–9230.

    Article  PubMed  CAS  Google Scholar 

  27. Jin T: The WNT signalling pathway and diabetes mellitus. Diabetologia 2008, 51:1771–1780.

    Article  PubMed  CAS  Google Scholar 

  28. Liu Z, Habener JF: Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J Biol Chem 2008, 283:8723–8735.

    Article  PubMed  CAS  Google Scholar 

  29. Nakae J, Kitamura T, Kitamura Y, et al.: The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell 2003, 4:119–129.

    Article  PubMed  CAS  Google Scholar 

  30. Armoni M, Harel C, Karni S, et al.: FOXO1 represses peroxisome proliferator-activated receptor-gamma1 and -gamma2 gene promoters in primary adipocytes. A novel paradigm to increase insulin sensitivity. J Biol Chem 2006, 281:19881–19891.

    Article  PubMed  CAS  Google Scholar 

  31. Dowell P, Otto TC, Adi S, Lane MD: Convergence of peroxisome proliferator-activated receptor gamma and Foxo1 signaling pathways. J Biol Chem 2003, 278:45485–45491.

    Article  PubMed  CAS  Google Scholar 

  32. Nakae J, Cao Y, Oki M, et al.: Forkhead transcription factor FoxO1 in adipose tissue regulates energy storage and expenditure. Diabetes 2008, 57:563–576.

    Article  PubMed  CAS  Google Scholar 

  33. Jing E, Gesta S, Kahn CR: SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab 2007, 6:105–114.

    Article  PubMed  CAS  Google Scholar 

  34. Wang F, Tong Q: SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1’s repressive interaction with PPARgamma. Mol Biol Cell 2009, 20:801–808.

    Article  PubMed  CAS  Google Scholar 

  35. Picard F, Kurtev M, Chung N, et al.: Sirt1 promotes fat mobilization in white adipocytes by repressing PPARgamma. Nature 2004, 429:771–776.

    Article  PubMed  CAS  Google Scholar 

  36. Subauste AR, Burant CF: Role of FoxO1 in FFA-induced oxidative stress in adipocytes. Am J Physiol Endocrinol Metab 2007, 293:E159–E164.

    Article  PubMed  CAS  Google Scholar 

  37. Bois PR, Grosveld GC: FKHR (FOXO1a) is required for myotube fusion of primary mouse myoblasts. EMBO J 2003, 22:1147–1157.

    Article  PubMed  CAS  Google Scholar 

  38. Hu P, Geles KG, Paik JH, et al.: Codependent activators direct myoblast-specific MyoD transcription. Dev Cell 2008, 15:534–546.

    Article  PubMed  CAS  Google Scholar 

  39. Lees SJ, Childs TE, Booth FW: Age-dependent FOXO regulation of p27Kip1 expression via a conserved binding motif in rat muscle precursor cells. Am J Physiol Cell Physiol 2008, 295:C1238–C1246.

    Article  PubMed  CAS  Google Scholar 

  40. Kitamura T, Kitamura YI, Funahashi Y, et al.: A Foxo/Notch pathway controls myogenic differentiation and fiber type specification. J Clin Invest 2007, 117:2477–2485.

    Article  PubMed  CAS  Google Scholar 

  41. Hribal ML, Nakae J, Kitamura T, et al.: Regulation of insulin-like growth factor-dependent myoblast differentiation by Foxo forkhead transcription factors. J Cell Biol 2003, 162:535–541.

    Article  PubMed  CAS  Google Scholar 

  42. Wu AL, Kim JH, Zhang C, et al.: Forkhead box protein O1 negatively regulates skeletal myocyte differentiation through degradation of mammalian target of rapamycin pathway components. Endocrinology 2008, 149:1407–1414.

    Article  PubMed  CAS  Google Scholar 

  43. Kamei Y, Miura S, Suzuki M, et al.: Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem 2004, 279:41114–41123.

    Article  PubMed  CAS  Google Scholar 

  44. Southgate RJ, Neill B, Prelovsek O, et al.: FOXO1 regulates the expression of 4E-BP1 and inhibits mTOR signaling in mammalian skeletal muscle. J Biol Chem 2007, 282:21176–21186.

    Article  PubMed  CAS  Google Scholar 

  45. Allen DL, Unterman TG: Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors. Am J Physiol Cell Physiol 2007, 292:C188–C199.

    Article  PubMed  CAS  Google Scholar 

  46. Furuyama T, Kitayama K, Yamashita H, Mori N: Forkhead transcription factor FOXO1 (FKHR)-dependent induction of PDK4 gene expression in skeletal muscle during energy deprivation. Biochem J 2003, 375:365–371.

    Article  PubMed  CAS  Google Scholar 

  47. Waddell DS, Baehr LM, van den Brandt J, et al.: The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene. Am J Physiol Endocrinol Metab 2008, 295:E785–E797.

    Article  PubMed  CAS  Google Scholar 

  48. Wang X, Hu Z, Hu J, et al.: Insulin resistance accelerates muscle protein degradation: activation of the ubiquitinproteasome pathway by defects in muscle cell signaling. Endocrinology 2006, 147:4160–4168.

    Article  PubMed  CAS  Google Scholar 

  49. Sandri M, Sandri C, Gilbert A, et al.: Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004, 117:399–412.

    Article  PubMed  CAS  Google Scholar 

  50. Mammucari C, Milan G, Romanello V, et al.: FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 2007, 6:458–471.

    Article  PubMed  CAS  Google Scholar 

  51. Zhao J, Brault JJ, Schild A, et al.: FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 2007, 6:472–483.

    Article  PubMed  CAS  Google Scholar 

  52. Kim M, Pak Y, Jang P, et al.: Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat Neurosci 2006, 9:901–906.

    Article  PubMed  CAS  Google Scholar 

  53. Kitamura T, Feng Y, Kitamura YI, et al.: Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat Med 2006, 12:534–540.

    Article  PubMed  CAS  Google Scholar 

  54. Fukuda M, Jones JE, Olson D, et al.: Monitoring FoxO1 localization in chemically identified neurons. J Neurosci 2008, 28:13640–13648.

    Article  PubMed  CAS  Google Scholar 

  55. Belgardt BF, Husch A, Rother E, et al.: PDK1 deficiency in POMC-expressing cells reveals FOXO1-dependent and -independent pathways in control of energy homeostasis and stress response. Cell Metab 2008, 7:291–301.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morris J. Birnbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, D.N., Wan, M. & Birnbaum, M.J. The role of FOXO in the regulation of metabolism. Curr Diab Rep 9, 208–214 (2009). https://doi.org/10.1007/s11892-009-0034-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-009-0034-5

Keywords

Navigation