Skip to main content

Advertisement

Log in

Molecular Function of TCF7L2: Consequences of TCF7L2 Splicing for Molecular Function and Risk for Type 2 Diabetes

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

TCF7L2 harbors the variant with the strongest effect on type 2 diabetes (T2D) identified to date, yet the molecular mechanism as to how variation in the gene increases the risk for developing T2D remains elusive. The phenotypic changes associated with the risk genotype suggest that T2D arises as a consequence of reduced islet mass and/or impaired function, and it has become clear that TCF7L2 plays an important role for several vital functions in the pancreatic islet. TCF7L2 comprises 17 exons, five of which are alternative (ie, exons 4 and 13–16). In pancreatic islets four splice variants of TCF7L2 are predominantly expressed. The regulation of these variants and the functional consequences at the protein level are still poorly understood. A clear picture of the molecular mechanism will be necessary to understand how an intronic variation in TCF7L2 can influence islet function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Grant SF, Thorleifsson G, Reynisdottir I, et al.: Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 2006, 38:320–323. A common variation in the TCF7L2 gene was shown for the first time to be associated with T2D.

    Article  CAS  PubMed  Google Scholar 

  2. Cauchi S, El Achhab Y, Choquet H, et al.: TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J Mol Med 2007, 85:777–782.

    Article  CAS  PubMed  Google Scholar 

  3. Florez JC: The new type 2 diabetes gene TCF7L2. Curr Opin Clin Nutr Metab Care 2007, 10:391–396.

    Article  CAS  PubMed  Google Scholar 

  4. Helgason A, Palsson S, Thorleifsson G, et al.: Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet 2007, 39:218–225.

    Article  CAS  PubMed  Google Scholar 

  5. Humphries SE, Gable D, Cooper JA, et al.: Common variants in the TCF7L2 gene and predisposition to type 2 diabetes in UK European Whites, Indian Asians and Afro-Caribbean men and women. J Mol Med 2006, 84:1005–1014.

    Article  CAS  PubMed  Google Scholar 

  6. Saxena R, Gianniny L, Burtt NP, et al.: Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. Diabetes 2006, 55:2890–2895.

    Article  CAS  PubMed  Google Scholar 

  7. Chang YC, Chang TJ, Jiang YD, et al.: Association study of the genetic polymorphisms of the transcription factor 7-like 2 (TCF7L2) gene and type 2 diabetes in the Chinese population. Diabetes 2007, 56:2631–2637.

    Article  CAS  PubMed  Google Scholar 

  8. Florez JC, Jablonski KA, Bayley N, et al.: TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med 2006, 355:241–250. This is the first publication to document a deficit in β-cell function caused by the TCF7L2 rs7903146 polymorphism.

    Article  CAS  PubMed  Google Scholar 

  9. Melzer D, Murray A, Hurst AJ, et al.: Effects of the diabetes linked TCF7L2 polymorphism in a representative older population. BMC Med 2006, 4:34.

    Article  PubMed  Google Scholar 

  10. Zeggini E, McCarthy MI: TCF7L2: the biggest story in diabetes genetics since HLA? Diabetologia 2007, 50:1–4.

    Article  CAS  PubMed  Google Scholar 

  11. Lyssenko V, Lupi R, Marchetti P, et al.: Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 2007, 117:2155–2163.

    Article  CAS  PubMed  Google Scholar 

  12. Villareal DT, Robertson H, Bell GI, et al.: TCF7L2 variant rs7903146 affects the risk of type 2 diabetes by modulating incretin action. Diabetes 2010, 59:479–485.

    Article  CAS  PubMed  Google Scholar 

  13. Chien AJ, Conrad WH, Moon RT: A Wnt survival guide: from flies to human disease. J Invest Dermatol 2009, 129:1614–1627.

    Article  CAS  PubMed  Google Scholar 

  14. Liu Z, Habener JF: Wnt signaling in pancreatic islets. Adv Exp Med Biol 2010, 654:391–419.

    Google Scholar 

  15. Mann B, Gelos M, Siedow A, et al.: Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci U S A 1999, 96:1603–1608.

    Article  CAS  PubMed  Google Scholar 

  16. He TC, Sparks AB, Rago C, et al.: Identification of c-MYC as a target of the APC pathway. Science 1998, 281:1509–1512.

    Article  CAS  PubMed  Google Scholar 

  17. Tetsu O, McCormick F: Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 1999, 398:422–426.

    Article  CAS  PubMed  Google Scholar 

  18. Shitashige M, Hirohashi S, Yamada T: Wnt signaling inside the nucleus. Cancer Sci 2008, 99:631–637.

    Article  CAS  PubMed  Google Scholar 

  19. Ford CE, Ekstrom EJ, Howlin J, et al.: The WNT-5a derived peptide, Foxy-5, possesses dual properties that impair progression of ERalpha negative breast cancer. Cell Cycle 2009, 8:1838–1842.

    CAS  PubMed  Google Scholar 

  20. MacDonald BT, Tamai K, He X: Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009, 17:9–26.

    Article  CAS  PubMed  Google Scholar 

  21. Hatzis P, van der Flier LG, van Driel MA, et al.: Genome-wide pattern of TCF7L2/TCF4 chromatin occupancy in colorectal cancer cells. Mol Cell Biol 2008, 28:2732–2744.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao J, Schug J, Li M, et al.: Disease-associated loci are significantly over-represented among genes bound by transcription factor 7-like 2 (TCF7L2) in vivo. Diabetologia 2010 Jul 17 [Epub ahead of print].

  23. Dessimoz J, Bonnard C, Huelsken J, et al.: Pancreas-specific deletion of beta-catenin reveals Wnt-dependent and Wnt-independent functions during development. Curr Biol 2005, 15:1677–1683.

    Article  CAS  PubMed  Google Scholar 

  24. Murtaugh LC, Law AC, Dor Y, et al.: Beta-catenin is essential for pancreatic acinar but not islet development. Development 2005, 132:4663–4674.

    Article  CAS  PubMed  Google Scholar 

  25. Papadopoulou S, Edlund H: Attenuated Wnt signaling perturbs pancreatic growth but not pancreatic function. Diabetes 2005, 54:2844–2851.

    Article  CAS  PubMed  Google Scholar 

  26. Schinner S, Ulgen F, Papewalis C, et al.: Regulation of insulin secretion, glucokinase gene transcription and beta cell proliferation by adipocyte-derived Wnt signalling molecules. Diabetologia 2008, 51:147–154.

    Article  CAS  PubMed  Google Scholar 

  27. Liu Z, Habener JF: Stromal cell-derived factor-1 promotes survival of pancreatic beta cells by the stabilisation of beta-catenin and activation of transcription factor 7-like 2 (TCF7L2). Diabetologia 2009, 52:1589–1598.

    Article  CAS  PubMed  Google Scholar 

  28. Fujino T, Asaba H, Kang MJ, et al.: Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc Natl Acad Sci U S A 2003, 100:229–234.

    Article  CAS  PubMed  Google Scholar 

  29. Shu L, Sauter NS, Schulthess FT, et al.: Transcription factor 7-like 2 regulates beta-cell survival and function in human pancreatic islets. Diabetes 2008, 57:645–653.

    Article  CAS  PubMed  Google Scholar 

  30. Shu L, Matveyenko AV, Kerr-Conte J, et al.: Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function. Hum Mol Genet 2009, 18:2388–2399.

    Article  CAS  PubMed  Google Scholar 

  31. da Silva Xavier G, Loder MK, McDonald A, et al.: TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells. Diabetes 2009, 58:894–905.

    Article  PubMed  Google Scholar 

  32. Loos RJ, Franks PW, Francis RW, et al.: TCF7L2 polymorphisms modulate proinsulin levels and beta-cell function in a British Europid population. Diabetes 2007, 56:1943–197.

    Article  CAS  PubMed  Google Scholar 

  33. Holst JJ: Implementation of GLP-1 based therapy of type 2 diabetes mellitus using DPP-IV inhibitors. Adv Exp Med Biol 2003, 524:263–279.

    Article  CAS  PubMed  Google Scholar 

  34. Orskov C: Glucagon-like peptide-1, a new hormone of the entero-insular axis. Diabetologia 1992, 35:701–711.

    CAS  PubMed  Google Scholar 

  35. Yi F, Brubaker PL, Jin T: TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J Biol Chem 2005, 280:1457–1464.

    Article  CAS  PubMed  Google Scholar 

  36. Liu Z, Habener JF: Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J Biol Chem 2008, 283:8723–8735.

    Article  CAS  PubMed  Google Scholar 

  37. Gaulton KJ, Nammo T, Pasquali L, et al.: A map of open chromatin in human pancreatic islets. Nat Genet 2010, 42:255–259. In this study the region surrounding rs7903146 is shown to be in an open chromatin state in human pancreatic islets by FAIRE-seq, and the chromatin structure at this locus was found to be more open in T allele than in C allele chromosomes.

    Article  CAS  PubMed  Google Scholar 

  38. Schafer SA, Tschritter O, Machicao F, et al.: Impaired glucagon-like peptide-1-induced insulin secretion in carriers of transcription factor 7-like 2 (TCF7L2) gene polymorphisms. Diabetologia 2007, 50:2443–2450.

    Article  CAS  PubMed  Google Scholar 

  39. Gonzalez-Sanchez JL, Martinez-Larrad MT, Zabena C, et al.: Association of variants of the TCF7L2 gene with increases in the risk of type 2 diabetes and the proinsulin:insulin ratio in the Spanish population. Diabetologia 2008, 51:1993–1997.

    Article  CAS  PubMed  Google Scholar 

  40. Kirchhoff K, Machicao F, Haupt A, et al.: Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 2008, 51:597–601.

    Article  CAS  PubMed  Google Scholar 

  41. Stolerman ES, Manning AK, McAteer JB, et al.: TCF7L2 variants are associated with increased proinsulin/insulin ratios but not obesity traits in the Framingham Heart Study. Diabetologia 2009, 52:614–620.

    Article  CAS  PubMed  Google Scholar 

  42. Cauchi S, Froguel P: TCF7L2 genetic defect and type 2 diabetes. Curr Diab Rep 2008, 8:149–155.

    Article  CAS  PubMed  Google Scholar 

  43. Elbein SC, Chu WS, Das SK, et al.: Transcription factor 7-like 2 polymorphisms and type 2 diabetes, glucose homeostasis traits and gene expression in US participants of European and African descent. Diabetologia 2007, 50:1621–1630.

    Article  CAS  PubMed  Google Scholar 

  44. Osmark P, Hansson O, Jonsson A, et al.: Unique splicing pattern of the TCF7L2 gene in human pancreatic islets. Diabetologia 2009, 52:850–854. The first extensive characterization of the TCF7L2 splice pattern in T2D-relevant tissues is reported using sequencing, restriction cleavage analysis, and absolute qPCR. Four dominant splice variants in human pancreatic islets are described.

    Article  CAS  PubMed  Google Scholar 

  45. Ahlzen M, Johansson LE, Cervin C, et al.: Expression of the transcription factor 7-like 2 gene (TCF7L2) in human adipocytes is down regulated by insulin. Biochem Biophys Res Commun 2008, 370:49–52.

    Article  CAS  PubMed  Google Scholar 

  46. Kovacs P, Berndt J, Ruschke K, et al.: TCF7L2 gene expression in human visceral and subcutaneous adipose tissue is differentially regulated but not associated with type 2 diabetes mellitus. Metabolism 2008, 57:1227–1231.

    Article  CAS  PubMed  Google Scholar 

  47. Wang ET, Sandberg R, Luo S, et al.: Alternative isoform regulation in human tissue transcriptomes. Nature 2008, 456:470–476.

    Article  CAS  PubMed  Google Scholar 

  48. Duval A, Rolland S, Tubacher E, et al.: The human T-cell transcription factor-4 gene: structure, extensive characterization of alternative splicings, and mutational analysis in colorectal cancer cell lines. Cancer Res 2000, 60:3872–3879.

    CAS  PubMed  Google Scholar 

  49. Mondal AK, Das SK, Baldini G, et al.: Genotype and tissue-specific effects on alternative splicing of the transcription factor 7-like 2 gene in humans. J Clin Endocrinol Metab 2010, 95:1450–1457.

    Article  CAS  PubMed  Google Scholar 

  50. Prokunina-Olsson L, Welch C, Hansson O, et al.: Tissue-specific alternative splicing of TCF7L2. Hum Mol Genet 2009, 18:3795–3804. The TCF7L2 splice pattern in human tissues, including pancreatic islets, is described using relative qPCR. A nominal association between TCF7L2 risk genotypes and the expression of transcripts including exon 16 is reported.

    Article  CAS  PubMed  Google Scholar 

  51. Bustin SA: Why the need for qPCR publication guidelines?—The case for MIQE. Methods 2010, 50:217–226. This article describes potential pitfalls when performing qPCR analysis and also proposes a check list for reporting this kind of data.

    Article  CAS  PubMed  Google Scholar 

  52. Bustin SA: Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 2000, 25:169–193.

    Article  CAS  PubMed  Google Scholar 

  53. Kirkpatrick CL, Marchetti P, Purrello F, et al.: Type 2 diabetes susceptibility gene expression in normal or diabetic sorted human alpha and beta cells: correlations with age or BMI of islet donors. PLoS One 2010, 5:e11053.

    Google Scholar 

  54. Weise A, Bruser K, Elfert S, et al.: Alternative splicing of Tcf7l2 transcripts generates protein variants with differential promoter-binding and transcriptional activation properties at Wnt/{beta}-catenin targets. Nucleic Acids Res 2010, 38:1964–1981. This is an excellent study investigating, among other things, the transcriptional activity of different TCF7L2 isoforms.

    Article  CAS  PubMed  Google Scholar 

  55. Prokunina-Olsson L, Kaplan LM, Schadt EE, et al.: Alternative splicing of TCF7L2 gene in omental and subcutaneous adipose tissue and risk of type 2 diabetes. PLoS One 2009, 4:e7231.

    Article  PubMed  Google Scholar 

  56. Nazwar TA, Glassmann A, Schilling K: Expression and molecular diversity of Tcf7l2 in the developing murine cerebellum and brain. J Neurosci Res 2009, 87:1532–1546.

    Article  CAS  PubMed  Google Scholar 

  57. Prokunina-Olsson L, Hall JL: Evidence for neuroendocrine function of a unique splicing form of TCF7L2 in human brain, islets and gut. Diabetologia 2010, 53:712–716.

    Google Scholar 

  58. Shiina H, Igawa M, Breault J, et al.: The human T-cell factor-4 gene splicing isoforms, Wnt signal pathway, and apoptosis in renal cell carcinoma. Clin Cancer Res 2003, 9:2121–2132.

    CAS  PubMed  Google Scholar 

  59. Hoppler S, Kavanagh CL: Wnt signalling: variety at the core. J Cell Sci 2007, 120:385–393.

    Article  CAS  PubMed  Google Scholar 

  60. Arce L, Yokoyama NN, Waterman ML: Diversity of LEF/TCF action in development and disease. Oncogene 2006, 25:7492–7504.

    Article  CAS  PubMed  Google Scholar 

  61. Lukas J, Mazna P, Valenta T, et al.: Dazap2 modulates transcription driven by the Wnt effector TCF-4. Nucleic Acids Res 2009, 37:3007–3020.

    Article  CAS  PubMed  Google Scholar 

  62. Arce L, Pate KT, Waterman ML: Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression. BMC Cancer 2009, 9:159.

    Article  PubMed  Google Scholar 

  63. Poy F, Lepourcelet M, Shivdasani RA, et al.: Structure of a human Tcf4-beta-catenin complex. Nat Struct Biol 2001, 8:1053–1057.

    Article  CAS  PubMed  Google Scholar 

  64. Fasolini M, Wu X, Flocco M, et al.: Hot spots in Tcf4 for the interaction with beta-catenin. J Biol Chem 2003, 278:21092–21098.

    Article  CAS  PubMed  Google Scholar 

  65. Brannon M, Brown JD, Bates R, et al.: XCtBP is a XTcf-3 co-repressor with roles throughout Xenopus development. Development 1999, 126:3159–3170.

    CAS  PubMed  Google Scholar 

  66. Hecht A, Kemler R: Curbing the nuclear activities of beta-catenin. Control over Wnt target gene expression. EMBO Rep 2000, 1:24–28.

    Article  CAS  PubMed  Google Scholar 

  67. Hecht A, Stemmler MP: Identification of a promoter-specific transcriptional activation domain at the C terminus of the Wnt effector protein T-cell factor 4. J Biol Chem 2003, 278:3776–3785.

    Article  CAS  PubMed  Google Scholar 

  68. Cuilliere-Dartigues P, El-Bchiri J, Krimi A, et al.: TCF-4 isoforms absent in TCF-4 mutated MSI-H colorectal cancer cells colocalize with nuclear CtBP and repress TCF-4-mediated transcription. Oncogene 2006, 25:4441–4448.

    Article  CAS  PubMed  Google Scholar 

  69. Bedford DC, Kasper LH, Fukuyama T, et al.: Target gene context influences the transcriptional requirement for the KAT3 family of CBP and p300 histone acetyltransferases. Epigenetics 2010, 5: 9–15.

    Article  CAS  PubMed  Google Scholar 

  70. Atcha FA, Syed A, Wu B, et al.: A unique DNA binding domain converts T-cell factors into strong Wnt effectors. Mol Cell Biol 2007, 27:8352–8363.

    Article  CAS  PubMed  Google Scholar 

  71. Pukrop T, Gradl D, Henningfeld KA, et al.: Identification of two regulatory elements within the high mobility group box transcription factor XTCF-4. J Biol Chem 2001, 276:8968–8978.

    Article  CAS  PubMed  Google Scholar 

  72. Gradl D, Konig A, Wedlich D: Functional diversity of Xenopus lymphoid enhancer factor/T-cell factor transcription factors relies on combinations of activating and repressing elements. J Biol Chem 2002, 277:14159–14171.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosure

Conflicts of interest: O. Hansson: has received a grant from the Novo Nordic Foundation; Y. Zhou: none; E. Renström: none; P. Osmark: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ola Hansson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansson, O., Zhou, Y., Renström, E. et al. Molecular Function of TCF7L2: Consequences of TCF7L2 Splicing for Molecular Function and Risk for Type 2 Diabetes. Curr Diab Rep 10, 444–451 (2010). https://doi.org/10.1007/s11892-010-0149-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-010-0149-8

Keywords

Navigation