Skip to main content

Advertisement

Log in

Specific PI3K Isoform Modulation in Heart Failure: Lessons from Transgenic Mice

  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Cardiac pathophysiology heavily relies on receptor-mediated signal transduction, and pharmacologic control of such biological processes has proven successful in preventing and treating multiple heart diseases. Recent progress in the study of receptor-mediated signal transduction events in the heart highlighted the role of a family of lipid kinases known as phosphoinositide 3-kinases (PI3Ks). These enzymes are involved downstream different receptors in the production of a lipid second messenger molecule (namely phosphatidylinositol (3,4,5)-trisphosphate [PIP3]), which mediates a large number of biological responses critical for the heart, including cardiomyocyte growth, survival, and contractility as well as cardiovascular inflammation. This review focuses on the recent advances in the understanding of PI3K function in cardiac pathophysiology obtained by studying mouse mutants for different PI3K genes and by validating the effects of PI3K pharmacologic inhibition in preclinical models of critical cardiac diseases like heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–7.

    Article  PubMed  CAS  Google Scholar 

  2. • Hirsch E, Braccini L, Ciraolo E, et al. Twice upon a time: PI3K’s secret double life exposed. Trends Biochem Sci (2009); 34:244–8. This review summarizes the recent findings on the double function of Class I PI3Ks as both lipid kinases and scaffold proteins.

    Article  PubMed  CAS  Google Scholar 

  3. Vanhaesebroeck B, Ali K, Bilancio A, et al. Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem Sci. 2005;30:194–204.

    Article  PubMed  CAS  Google Scholar 

  4. Williams R, Berndt A, Miller S, et al. Form and flexibility in phosphoinositide 3-kinases. Biochem Soc Trans. 2009;37:615–26.

    Article  PubMed  CAS  Google Scholar 

  5. Ciraolo E, Iezzi M, Marone R, et al. Phosphoinositide 3-kinase p110beta activity: key role in metabolism and mammary gland cancer but not development. Sci Signal. 2008;1:ra3.

    Article  PubMed  Google Scholar 

  6. Guillermet-Guibert J, Bjorklof K, Salpekar A, et al. The p110beta isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110gamma. Proc Natl Acad Sci USA. 2008;105:8292–7.

    Article  PubMed  CAS  Google Scholar 

  7. Pacold ME, Suire S, Perisic O, et al. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Cell. 2000;103:931–43.

    Article  PubMed  CAS  Google Scholar 

  8. Franke TF. Intracellular signaling by Akt: bound to be specific. Sci Signal. 2008;1:pe29.

    Article  PubMed  Google Scholar 

  9. Di Cristofano A, Pandolfi PP. The multiple roles of PTEN in tumor suppression. Cell. 2000;100:387–90.

    Article  PubMed  Google Scholar 

  10. Parsons R, Simpson L. PTEN and cancer. Meth Mol Biol. 2003;222:147–66.

    CAS  Google Scholar 

  11. Schurmans S, Carrio R, Behrends J, et al. The mouse SHIP2 (Inpp l1) gene: complementary DNA, genomic structure, promoter analysis, and gene expression in the embryo and adult mouse. Genomics. 1999;62:260–71.

    Article  PubMed  CAS  Google Scholar 

  12. •• Lu Z, Jiang YP, Wang W, et al. Loss of cardiac phosphoinositide 3-kinase p110 alpha results in contractile dysfunction. Circulation (2009); 120:318–25. This study describes the role of PI3Kα in controlling cardiac contractility through the regulation of the low threshold calcium channel number at the plasma membrane.

    Article  PubMed  CAS  Google Scholar 

  13. McMullen JR, Shioi T, Huang WY, et al. The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway. J Biol Chem. 2004;279:4782–93.

    Article  PubMed  CAS  Google Scholar 

  14. Bi L, Okabe I, Bernard DJ, et al. Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110alpha subunit of phosphoinositide 3-kinase. J Biol Chem. 1999;274:10963–8.

    Article  PubMed  CAS  Google Scholar 

  15. Crackower MA, Oudit GY, Kozieradzki I, et al. Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell. 2002;110:737–49.

    Article  PubMed  CAS  Google Scholar 

  16. Shioi T, Kang PM, Douglas PS, et al. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J. 2000;19:2537–48.

    Article  PubMed  CAS  Google Scholar 

  17. Yano N, Tseng A, Zhao TC, et al. Temporally controlled overexpression of cardiac-specific PI3Kalpha induces enhanced myocardial contractility—a new transgenic model. Am J Physiol Heart Circ Physiol. 2008;295:H1690–4.

    Article  PubMed  CAS  Google Scholar 

  18. Condorelli G, Drusco A, Stassi G, et al. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc Natl Acad Sci USA. 2002;99:12333–8.

    Article  PubMed  CAS  Google Scholar 

  19. DeBosch B, Treskov I, Lupu TS, et al. Akt1 is required for physiological cardiac growth. Circulation. 2006;113:2097–104.

    Article  PubMed  CAS  Google Scholar 

  20. Matsui T, Li L, Wu JC, et al. Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem. 2002;277:22896–901.

    Article  PubMed  CAS  Google Scholar 

  21. McMullen JR, Shioi T, Zhang L, et al. Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci USA. 2003;100:12355–60.

    Article  PubMed  CAS  Google Scholar 

  22. • Lin RC, Weeks KL, Gao XM, et al. PI3K(p110 alpha) protects against myocardial infarction-induced heart failure: identification of PI3K-regulated miRNA and mRNA. Arterioscler Thromb Vasc Biol (2010); 30:724-32. This study shows that mice overexpressing PI3Kα in the heart are protected from myocardial infarction–induced heart failure, whereas animals carrying a dominant negative isoform have impaired cardiac function.

    Article  PubMed  CAS  Google Scholar 

  23. McMullen JR, Amirahmadi F, Woodcock EA, et al. Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proc Natl Acad Sci USA. 2007;104:612–7.

    Article  PubMed  CAS  Google Scholar 

  24. Liang W, Oudit GY, Patel MM, et al. Role of phosphoinositide 3-kinase {alpha}, protein kinase C, and L-type Ca2+ channels in mediating the complex actions of angiotensin II on mouse cardiac contractility. Hypertension. 2010;56:422–9.

    Article  PubMed  CAS  Google Scholar 

  25. Sun H, Kerfant BG, Zhao D, et al. Insulin-like growth factor-1 and PTEN deletion enhance cardiac L-type Ca2+ currents via increased PI3Kalpha/PKB signaling. Circ Res. 2006;98:1390–7.

    Article  PubMed  CAS  Google Scholar 

  26. Hirsch E, Katanaev VL, Garlanda C, et al. Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science. 2000;287:1049–53.

    Article  PubMed  CAS  Google Scholar 

  27. Li Z, Jiang H, Xie W, et al. Roles of PLC-beta2 and -beta3 and PI3Kgamma in chemoattractant-mediated signal transduction. Science. 2000;287:1046–9.

    Article  PubMed  CAS  Google Scholar 

  28. Sasaki T, Irie-Sasaki J, Jones RG, et al. Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science. 2000;287:1040–6.

    Article  PubMed  CAS  Google Scholar 

  29. Laffargue M, Calvez R, Finan P, et al. Phosphoinositide 3-kinase gamma is an essential amplifier of mast cell function. Immunity. 2002;16:441–51.

    Article  PubMed  CAS  Google Scholar 

  30. Nombela-Arrieta C, Lacalle RA, Montoya MC, et al. Differential requirements for DOCK2 and phosphoinositide-3-kinase gamma during T and B lymphocyte homing. Immunity. 2004;21:429–41.

    Article  PubMed  CAS  Google Scholar 

  31. Shi J, Cinek T, Truitt KE, Imboden JB. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, blocks antigen-mediated, but not CD3 monoclonal antibody-induced, activation of murine CD4+ T cells. J Immunol. 1997;158:4688–95.

    PubMed  CAS  Google Scholar 

  32. Puri KD, Doggett TA, Huang CY, et al. The role of endothelial PI3Kgamma activity in neutrophil trafficking. Blood. 2005;106:150–7.

    Article  PubMed  CAS  Google Scholar 

  33. Vecchione C, Patrucco E, Marino G, et al. Protection from angiotensin II-mediated vasculotoxic to hypertensive response in mice lacking PI3Kgamma. J Exp Med. 2005;201:1217–28.

    Article  PubMed  CAS  Google Scholar 

  34. Chang JD, Sukhova GK, Libby P, et al. Deletion of the phosphoinositide 3-kinase p110gamma gene attenuates murine atherosclerosis. Proc Natl Acad Sci USA. 2007;104:8077–82.

    Article  PubMed  CAS  Google Scholar 

  35. • Fougerat A, Gayral S, Gourdy P, et al. Genetic and pharmacological targeting of phosphoinositide 3-kinase-gamma reduces atherosclerosis and favors plaque stability by modulating inflammatory processes. Circulation (2008); 117:1310–7. This study underlies the importance of PI3Kγ in regulating multiple stages of atherosclerotic lesion formation, thus pointing to PI3Kγ as a new potential target in the treatment of atherosclerosis.

    Article  PubMed  CAS  Google Scholar 

  36. Kuwahara F, Kai H, Tokuda K, et al. Hypertensive myocardial fibrosis and diastolic dysfunction: another model of inflammation? Hypertension. 2004;43:739–45.

    Article  PubMed  CAS  Google Scholar 

  37. • Damilano F, Franco I, Perrino C, et al. Distinct effects of leukocyte and cardiac phosphoinositide 3-kinase gamma activity in pressure overload-induced cardiac failure. Circulation (2011); 123:391–9. This study describes how PI3Kγ, by modulating both cardiac and immune cell functions, contributes to the maladaptive remodeling induced by pressure overload.

    Article  PubMed  CAS  Google Scholar 

  38. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415:198–205.

    Article  PubMed  CAS  Google Scholar 

  39. Jurevicius J, Skeberdis VA, Fischmeister R. Role of cyclic nucleotide phosphodiesterase isoforms in cAMP compartmentation following beta2-adrenergic stimulation of ICa, L in frog ventricular myocytes. J Physiol. 2003;551:239–52.

    Article  PubMed  CAS  Google Scholar 

  40. Zaccolo M, Pozzan T. Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science. 2002;295:1711–5.

    Article  PubMed  CAS  Google Scholar 

  41. Scott JD, Pawson T. Cell signaling in space and time: where proteins come together and when they’re apart. Science. 2009;326:1220–4.

    Article  PubMed  CAS  Google Scholar 

  42. Patrucco E, Notte A, Barberis L, et al. PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell. 2004;118:375–87.

    Article  PubMed  CAS  Google Scholar 

  43. •• Perino A, Ghigo A, Ferrero E, et al. Integrating cardiac PIP3 and cAMP signaling through a PKA anchoring function of p110γ. Mol Cell (2011); 42:1–12. This study describes the double function of cardiac PI3Kγ as a scaffold protein and a kinase and proposes the pharmacologic inhibition of this enzyme in the treatment of heart failure.

    Article  Google Scholar 

  44. Haubner BJ, Neely GG, Voelkl JG, et al. PI3Kgamma protects from myocardial ischemia to reperfusion injury through a kinase-independent pathway. PLoS ONE. 2010;5:e9350.

    Article  PubMed  Google Scholar 

  45. Kerfant BG, Zhao D, Lorenzen-Schmidt I, et al. PI3Kgamma is required for PDE4, not PDE3, activity in subcellular microdomains containing the sarcoplasmic reticular calcium ATPase in cardiomyocytes. Circ Res. 2007;101:400–8.

    Article  PubMed  CAS  Google Scholar 

  46. Kerfant BG, Gidrewicz D, Sun H, et al. Cardiac sarcoplasmic reticulum calcium release and load are enhanced by subcellular cAMP elevations in PI3Kgamma-deficient mice. Circ Res. 2005;96:1079–86.

    Article  PubMed  CAS  Google Scholar 

  47. Guo D, Kassiri Z, Basu R, et al. Loss of PI3Kgamma enhances cAMP-dependent MMP remodeling of the myocardial N-cadherin adhesion complexes and extracellular matrix in response to early biomechanical stress. Circ Res. 2010;107:1275–89.

    Article  PubMed  CAS  Google Scholar 

  48. Rockman HA, Koch WJ, Lefkowitz RJ. Seven-transmembrane-spanning receptors and heart function. Nature. 2002;415:206–12.

    Article  PubMed  CAS  Google Scholar 

  49. Bristow MR. Why does the myocardium fail? Insights from basic science. Lancet. 1998;352 Suppl 1:SI8–14.

    Article  PubMed  Google Scholar 

  50. Bristow MR, Ginsburg R, Minobe W, et al. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982;307:205–11.

    Article  PubMed  CAS  Google Scholar 

  51. Lefkowitz RJ, Whalen EJ. Beta-arrestins: traffic cops of cell signaling. Curr Opin Cell Biol. 2004;16:162–8.

    Article  PubMed  CAS  Google Scholar 

  52. Naga Prasad SV, Barak LS, Rapacciuolo A, et al. Agonist-dependent recruitment of phosphoinositide 3-kinase to the membrane by beta-adrenergic receptor kinase 1. A role in receptor sequestration. J Biol Chem. 2001;276:18953–9.

    Article  PubMed  CAS  Google Scholar 

  53. Nienaber JJ, Tachibana H, Naga Prasad SV, et al. Inhibition of receptor-localized PI3K preserves cardiac beta-adrenergic receptor function and ameliorates pressure overload heart failure. J Clin Invest. 2003;112:1067–79.

    PubMed  CAS  Google Scholar 

  54. Naga Prasad SV, Esposito G, Mao L, et al. Gbetagamma-dependent phosphoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy. J Biol Chem. 2000;275:4693–8.

    Article  PubMed  CAS  Google Scholar 

  55. Laporte SA, Oakley RH, Holt JA, et al. The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits. J Biol Chem. 2000;275:23120–6.

    Article  PubMed  CAS  Google Scholar 

  56. Naga Prasad SV, Laporte SA, Chamberlain D, et al. Phosphoinositide 3-kinase regulates beta2-adrenergic receptor endocytosis by AP-2 recruitment to the receptor/beta-arrestin complex. J Cell Biol. 2002;158:563–75.

    Article  PubMed  Google Scholar 

  57. Naga Prasad SV, Jayatilleke A, Madamanchi A, Rockman HA. Protein kinase activity of phosphoinositide 3-kinase regulates beta-adrenergic receptor endocytosis. Nat Cell Biol. 2005;7:785–96.

    Article  PubMed  Google Scholar 

  58. Perrino C, Naga Prasad SV, Mao L, et al. Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. J Clin Invest. 2006;116:1547–60.

    Article  PubMed  CAS  Google Scholar 

  59. Perrino C, Naga Prasad SV, Patel M, et al. Targeted inhibition of beta-adrenergic receptor kinase-1-associated phosphoinositide-3 kinase activity preserves beta-adrenergic receptor signaling and prolongs survival in heart failure induced by calsequestrin overexpression. J Am Coll Cardiol. 2005;45:1862–70.

    Article  PubMed  CAS  Google Scholar 

  60. Perrino C, Schroder JN, Lima B, et al. Dynamic regulation of phosphoinositide 3-kinase-gamma activity and beta-adrenergic receptor trafficking in end-stage human heart failure. Circulation. 2007;116:2571–9.

    Article  PubMed  CAS  Google Scholar 

  61. Seropian IM, Abbate A, Toldo S, et al. Pharmacological inhibition of phosphoinositide 3-kinase gamma (PI3Kgamma) promotes infarct resorption and prevents adverse cardiac remodeling after myocardial infarction in mice. J Cardiovasc Pharmacol. 2010;56(6):651–8.

    Article  PubMed  CAS  Google Scholar 

  62. Doukas J, Wrasidlo W, Noronha G, et al. Isoform-selective PI3K inhibitors as novel therapeutics for the treatment of acute myocardial infarction. Biochem Soc Trans. 2007;35:204–6.

    Article  PubMed  CAS  Google Scholar 

  63. Ban K, Cooper AJ, Samuel S, et al. Phosphatidylinositol 3-kinase gamma is a critical mediator of myocardial ischemic and adenosine-mediated preconditioning. Circ Res. 2008;103:643–53.

    Article  PubMed  CAS  Google Scholar 

  64. Siragusa M, Katare R, Meloni M, et al. Involvement of phosphoinositide 3-kinase gamma in angiogenesis and healing of experimental myocardial infarction in mice. Circ Res. 2010;106:757–68.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Drs. Alessandra Ghigo, Fulvio Morello, and Alessia Perino contributed equally to this manuscript.

Disclosures

Drs. Alessandra Ghigo, Fulvio Morello, Alessia Perino, Federico Damilano, and Emilio Hirsch all have received a grant from EUGeneHeart and have grants pending from Fondation Leducq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Hirsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghigo, A., Morello, F., Perino, A. et al. Specific PI3K Isoform Modulation in Heart Failure: Lessons from Transgenic Mice. Curr Heart Fail Rep 8, 168–175 (2011). https://doi.org/10.1007/s11897-011-0059-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-011-0059-3

Keywords

Navigation