Skip to main content

Advertisement

Log in

Early Immune Senescence in HIV Disease

  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Non-AIDS-defining co-morbidities that occur despite viral suppression and immune reconstitution using antiretroviral therapy depict early aging process in HIV-infected individuals. During aging, a reduction in T-cell renewal, together with a progressive enrichment of terminally differentiated T cells, translates into a general decline of the immune system, gradually leading to immunosenescence. Inflammation is a hallmark of age-associated comorbidities, and immune activation is a hallmark of HIV disease. Constant stimulation of the immune system by HIV or due to co-infections activates the innate and adaptive immune system, resulting in release of mediators of inflammation. Immune activation coupled with lack of anti-inflammatory responses likely results in accelerated aging in HIV disease. Dysfunctional thymic output, along with HIV-mediated disruption of the gastrointestinal barrier leading to microbial translocation, contributes to the circulating antigenic load driving early senescence in HIV disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Effros RB, Fletcher CV, Gebo K, et al.: Aging and infectious diseases: workshop on HIV infection and aging: what is known and future research directions. Clin Infect Dis 2008, 47:542–553.

    Article  PubMed  Google Scholar 

  2. Teichmann J, Stephan E, Discher T, et al.: Changes in calciotropic hormones and biochemical markers of bone metabolism in patients with human immunodeficiency virus infection. Metabolism 2000, 49:1134–1139.

    Article  PubMed  CAS  Google Scholar 

  3. Kaplan RC, Kingsley LA, Sharrett AR, et al.: Ten-year predicted coronary heart disease risk in HIV-infected men and women. Clin Infect Dis 2007, 45:1074–1081

    Article  PubMed  Google Scholar 

  4. Ikezu T: The aging of human-immunodeficiency-virus-associated neurocognitive disorders. J Neuroimmune Pharmacol 2009, 4:161–162.

    Article  PubMed  Google Scholar 

  5. Desquilbet L, Margolick JB, Fried LP, et al.: Relationship between a frailty-related phenotype and progressive deterioration of the immune system in HIV-infected men. J Acquir Immune Defic Syndr 2009, 50:299–306.

    Article  PubMed  Google Scholar 

  6. Pawelec G, Effros RB, Caruso C, et al.: T cells and aging (update february 1999). Front Biosci 1999, 4:D216–269.

    Article  PubMed  CAS  Google Scholar 

  7. Hunt PW, Brenchley J, Sinclair E, et al.: Relationship between T cell activation and CD4+ T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy. J Infect Dis 2008, 197:126–133.

    Article  PubMed  Google Scholar 

  8. Appay V, Sauce D: Immune activation and inflammation in HIV-1 infection: causes and consequences. J Pathol 2008, 214:231–241.

    Article  PubMed  CAS  Google Scholar 

  9. Deeks SG, Phillips AN: HIV infection, antiretroviral treatment, ageing, and non-AIDS related morbidity. BMJ 2009, 338:a3172.

    Article  PubMed  Google Scholar 

  10. Piatak M Jr, Saag MS, Yang LC, et al.: High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 1993, 259:1749–1754.

    Article  PubMed  CAS  Google Scholar 

  11. Hardy AW, Graham DR, Shearer GM, Herbeuval JP: HIV turns plasmacytoid dendritic cells (pDC) into TRAIL-expressing killer pDC and down-regulates HIV coreceptors by Toll-like receptor 7-induced IFN-alpha. Proc Natl Acad Sci U S A 2007, 104:17453–17458.

    Article  PubMed  CAS  Google Scholar 

  12. Esser MT, Bess JW, Jr., Suryanarayana K, et al.: Partial activation and induction of apoptosis in CD4(+) and CD8(+) T lymphocytes by conformationally authentic noninfectious human immunodeficiency virus type 1. J Virol 2001;75:1152–1164.

    Article  PubMed  CAS  Google Scholar 

  13. Kuller LH, Tracy R, Belloso W, et al.: Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. PLoS Med 2008, 5:e203.

    Article  PubMed  CAS  Google Scholar 

  14. Eggena MP, Barugahare B, Jones N, et al.: Depletion of regulatory T cells in HIV infection is associated with immune activation. J Immunol 2005, 174:4407–4414.

    PubMed  CAS  Google Scholar 

  15. Giorgi JV, Lyles RH, Matud JL, et al.: Predictive value of immunologic and virologic markers after long or short duration of HIV-1 infection. J Acquir Immune Defic Syndr 2002, 29:346–355.

    PubMed  Google Scholar 

  16. Czesnikiewicz-Guzik M, Lee WW, Cui D, et al.: T cell subset-specific susceptibility to aging. Clin Immunol 2008, 127:107–118.

    Article  PubMed  CAS  Google Scholar 

  17. Cheng X, Yu X, Ding YJ, et al.: The Th17/Treg imbalance in patients with acute coronary syndrome. Clin Immunol 2008, 127:89–97.

    PubMed  CAS  Google Scholar 

  18. Huang MC, Liao JJ, Bonasera S, et al.: Nuclear factor-kappaB-dependent reversal of aging-induced alterations in T cell cytokines. Faseb J 2008, 22:2142–2150.

    Article  PubMed  CAS  Google Scholar 

  19. Caruso C, Candore G, Colonna-Romano G, et al.: Inflammation and life-span. Science 2005, 307:208–209; author reply 208–209.

    Article  PubMed  CAS  Google Scholar 

  20. Ginaldi L, De Martinis M, Monti D, Franceschi C: Chronic antigenic load and apoptosis in immunosenescence. Trends Immunol 2005, 26:79–84.

    Article  PubMed  CAS  Google Scholar 

  21. Linton PJ, Dorshkind K: Age-related changes in lymphocyte development and function. Nat Immunol 2004, 5:133–139.

    Article  PubMed  CAS  Google Scholar 

  22. Kelley CF, Kitchen CM, Hunt PW, et al.: Incomplete peripheral CD4+ cell count restoration in HIV-infected patients receiving long-term antiretroviral treatment. Clin Infect Dis 2009, 48:787–794.

    Article  PubMed  Google Scholar 

  23. Douek DC, McFarland RD, Keiser PH, et al.: Changes in thymic function with age and during the treatment of HIV infection. Nature 1998, 396:690–695.

    Article  PubMed  CAS  Google Scholar 

  24. Lenschow DJ, Walunas TL, Bluestone JA: CD28/B7 system of T cell costimulation. Annu Rev Immunol 1996, 14:233–258.

    Article  PubMed  CAS  Google Scholar 

  25. Spaulding C, Guo W, Effros RB: Resistance to apoptosis in human CD8+ T cells that reach replicative senescence after multiple rounds of antigen-specific proliferation. Exp Gerontol 1999, 34:633–644.

    Article  PubMed  CAS  Google Scholar 

  26. Merino J, Martinez-Gonzalez MA, Rubio M, et al.: Progressive decrease of CD8high+ CD28+ CD57− cells with ageing. Clin Exp Immunol 1998, 112:48–51.

    Article  PubMed  CAS  Google Scholar 

  27. Brenchley JM, Karandikar NJ, Betts MR, et al.: Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 2003, 101:2711–2720.

    Article  PubMed  CAS  Google Scholar 

  28. Cao W, Jamieson BD, Hultin LE, et al.: Premature aging of T cells is associated with faster HIV-1 disease progression. J Acquir Immune Defic Syndr 2009, 50:137–147.

    Article  PubMed  Google Scholar 

  29. Valenzuela HF, Effros RB: Divergent telomerase and CD28 expression patterns in human CD4 and CD8 T cells following repeated encounters with the same antigenic stimulus. Clin Immunol 2002, 105:117–125.

    Article  PubMed  CAS  Google Scholar 

  30. Gamberg J, Pardoe I, Bowmer MI, et al.: Lack of CD28 expression on HIV-specific cytotoxic T lymphocytes is associated with disease progression. Immunol Cell Biol 2004, 82:38–46.

    Article  PubMed  CAS  Google Scholar 

  31. Choremi-Papadopoulou H, Panagiotou N, Samouilidou E, et al.: CD28 costimulation and CD28 expression in T lymphocyte subsets in HIV-1 infection with and without progression to AIDS. Clin Exp Immunol 2000, 119:499–506.

    Article  PubMed  CAS  Google Scholar 

  32. Choi BS, Park YK and Lee JS. The CD28/HLA-DR expressions on CD4+T but not CD8+T cells are significant predictors for progression to AIDS. Clin Exp Immunol 2002, 127:137–144.

    Article  PubMed  CAS  Google Scholar 

  33. Desai SR, Usuga X, Martinson J, et al.: Immune senescence, activation and abnormal T cell homeostasis despite effective HAART, a hallmark of early aging in HIV. Presented at 16th Conference on Retroviruses and Opportunistic Infections. Montreal; February 8–11, 2009.

  34. Bourgeois C, Hao Z, Rajewsky K, et al.: Ablation of thymic export causes accelerated decay of naïve CD4 T cells in the periphery because of activation by environmental antigen. Proc Natl Acad Sci U S A 2008, 105:8691–8696.

    Article  PubMed  Google Scholar 

  35. Redelings MD, Sorvillo F, Mascola L: Increase in Clostridium difficile-related mortality rates, United States, 1999–2004. Emerg Infect Dis 2007, 13:1417–1419.

    PubMed  Google Scholar 

  36. Cohen J: Retrovirus meeting. Back-to-basics push as HIV prevention struggles. Science 2008, 319:888.

    Article  PubMed  CAS  Google Scholar 

  37. Brenchley JM, Price DA, Schacker TW, et al.: Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 2006, 12:1365–1371.

    Article  PubMed  CAS  Google Scholar 

  38. Panda A, Arjona A, Sapey E, et al.: Human innate immunosenescence: causes and consequences for immunity in old age. Trends Immunol 2009, 30:325–333.

    Article  PubMed  CAS  Google Scholar 

  39. Renshaw M, Rockwell J, Engleman C, et al.: Cutting edge: impaired Toll-like receptor expression and function in aging. J Immunol 2002, 169:4697–4701.

    PubMed  CAS  Google Scholar 

  40. Helenius M, Hanninen M, Lehtinen SK, Salminen A: Changes associated with aging and replicative senescence in the regulation of transcription factor nuclear factor-kappa B. Biochem J 1996, 318:603–608.

    PubMed  CAS  Google Scholar 

  41. Hinojosa E, Boyd AR, Orihuela CJ: Age-associated inflammation and toll-like receptor dysfunction prime the lungs for pneumococcal pneumonia. J Infect Dis 2009, 200:546–554.

    Article  PubMed  CAS  Google Scholar 

  42. van Duin D, Mohanty S, Thomas V, et al.: Age-associated defect in human TLR-1/2 function. J Immunol 2007, 178:970–975.

    PubMed  Google Scholar 

  43. Stout-Delgado HW, Yang X, Walker WE, et al.: Aging impairs IFN regulatory factor 7 up-regulation in plasmacytoid dendritic cells during TLR9 activation. J Immunol 2008, 181:6747–6756.

    PubMed  CAS  Google Scholar 

  44. Martinson J, Montoya CJ, Usuga X, et al.: Chloroquine modulates HIV-1 induced plasmacytoid dendritic cell IFNα: implication for T cell activation. Antimicrob Agent Chemother 2010, 54(2):871–881.

    Article  CAS  Google Scholar 

  45. Hatano H, Delwart EL, Norris PJ, et al.: Evidence for persistent low-level viremia in individuals who control human immunodeficiency virus in the absence of antiretroviral therapy. J Virol 2009, 83:329–335.

    Article  PubMed  CAS  Google Scholar 

  46. Czeslick E, Struppert A, Simm A, Sablotzki A: E5564 (Eritoran) inhibits lipopolysaccharide-induced cytokine production in human blood monocytes. Inflamm Res 2006, 55:511–515.

    Article  PubMed  CAS  Google Scholar 

  47. Connolly NC, Riddler SA, Rinaldo CR: Proinflammatory cytokines in HIV disease-a review and rationale for new therapeutic approaches. AIDS Rev 2005, 7:168–180.

    PubMed  Google Scholar 

  48. Levy Y, Lacabaratz C, Weiss L, et al.: Enhanced T cell recovery in HIV-1-infected adults through IL-7 treatment. J Clin Invest 2009, 119:997–1007.

    PubMed  CAS  Google Scholar 

  49. Dagarag M, Evazyan T, Rao N, Effros RB: Genetic manipulation of telomerase in HIV-specific CD8+ T cells: enhanced antiviral functions accompany the increased proliferative potential and telomere length stabilization. J Immunol 2004, 173:6303–6311.

    PubMed  CAS  Google Scholar 

  50. Fauce SR, Jamieson BD, Chin AC, et al.: Telomerase-based pharmacologic enhancement of antiviral function of human CD8+ T lymphocytes. J Immunol 2008, 181:7400–7406.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Jules Levin, Executive Director and Founder, NATAP for driving our attention to important work done and to be done on aging and HIV research.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Desai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, S., Landay, A. Early Immune Senescence in HIV Disease. Curr HIV/AIDS Rep 7, 4–10 (2010). https://doi.org/10.1007/s11904-009-0038-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-009-0038-4

Keywords

Navigation