Skip to main content

Advertisement

Log in

Insulin and the vasculature

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Under physiologic conditions, insulin plays a vasculoprotective role by acting as a vasodilator through the stimulation of nitric oxide synthesis and release from the endothelium. In addition, insulin may decrease the contractile response of vascular smooth muscle cells (VSMC) to vasoactive agents by decreasing the intracellular calcium concentration [Ca2+]i. However, in the insulin resistance syndrome, the vasodilator effect of insulin may be blunted, an abnormality that may be related to endothelial dysfunction. Insulin resistance correlates with carotid wall thickness and stiffness, but the relationship is modified by sex and ethnic factors. Insulin can act as growth factor stimulating VSMC growth in culture. Insulin-sensitizing agents are efficacious in improving the vascular pathology associated with insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Haffner S: Epidemiology of insulin resistance and its relation to coronary artery disease. Am J Cardiol 1999, 84:11J-14J.

    Article  PubMed  CAS  Google Scholar 

  2. Ruige JB, Assendelft WJJ, Dekker JM, et al..: Insulin and risk of cardiovascular disease: a meta-analysis. Circulation 1998, 97:996–1001. A meta-analysis of 12 prospective studies showing overall a weak association between insulin and cardiovascular disease.

    PubMed  CAS  Google Scholar 

  3. Reaven GM: Role of insulin resistance in human disease (syndrome X): an expanded definition. Annu Rev Med 1993, 44:121–131.

    Article  PubMed  CAS  Google Scholar 

  4. Anderson EA, Hoffman RP, Balon TW, et al..: Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest 1991, 87:2246–2252.

    PubMed  CAS  Google Scholar 

  5. Baron AD, Brechtel-Hook, Johnson A, Hardin D: Skeletal blood flow. A possible link between insulin resistance and blood pressure. Hypertension 1993, 21:129–135.

    PubMed  CAS  Google Scholar 

  6. Feldman RD, Hramiak RM, Finegood DT, Behme MT: Parallel regulation of the local vascular and systemic metabolic effects of insulin. J Clin Endocrinol Metab 1995, 80:1556–1559.

    Article  PubMed  CAS  Google Scholar 

  7. Laasko M, Edelman S, Brechtel G, Baron A: Impaired insulinmediated skeletal muscle blood flow in patients with NIDDM. Diabetes 1992, 41:1076–1083.

    Article  Google Scholar 

  8. Rowe JW, Young JB, Minaker KL, et al..: Effect of insulin and glucose infusions on sympathetic nervous system activity in normal men. Diabetes 1981, 30:219–225.

    PubMed  CAS  Google Scholar 

  9. Scherrer U, Randin D, Vollenweider P, et al..: Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Invest 1994, 94:2511–2515.

    PubMed  CAS  Google Scholar 

  10. Steinberg H, Brechtel G, Johnson A, et al..: Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest 1994, 94:1172–1179.

    PubMed  CAS  Google Scholar 

  11. Hsueh W, Law R: Insulin signaling in the arterial wall. Am J Cardiol 1999, 84:21J-24J.

    Article  PubMed  CAS  Google Scholar 

  12. Sarkar R, Meinberg EG, Stanley JC, et al.: Nitric oxide reversibly inhibits the migration of cultured vascular smooth muscle cells. Circ Res 1996, 78:225–230.

    PubMed  CAS  Google Scholar 

  13. Garg UC, Hassid A: Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1989, 83:1774–1777.

    PubMed  CAS  Google Scholar 

  14. Radomski MW, Moncada S: The biological and pharmacological role of nitric oxide in platelet function. Adv Exp Med Biol 1993, 344:251–264.

    PubMed  CAS  Google Scholar 

  15. von der Leyen HE, Gibbons GH, Morishita R, et al..: Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci U S A 1995, 92:1137–1141.

    Article  PubMed  Google Scholar 

  16. Baron AD: Vascular reactivity. Am J Cardiol 1999, 84:25J-27J.

    Article  PubMed  CAS  Google Scholar 

  17. Saito F, Hori MT, Fittingoff M, Tuck ML: Insulin attenuates agonist-mediated calcium mobilization in cultured rat vascular smooth muscle cells. J Clin Invest 1993, 92:1161–1168.

    PubMed  CAS  Google Scholar 

  18. Kahn AM, Allen JC, Seidel CL, Song T: Insulin inhibits serotonin-induced Ca2+ influx in vascular smooth muscle cell. Ciculation 1994, 90:384–390.

    CAS  Google Scholar 

  19. Laasko M, Edelman S, Brechtel G, Baron A: Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J Clin Invest 1990, 85:1844–1852.

    Google Scholar 

  20. Petrie JR, Ueda S, Webb D, et al..: Endothelial nitric oxide production and insulin sensitivity. A physiological link with implications for pathogenesis of cardiovascular disease. Circulation 1996, 93:1331–1333.

    PubMed  CAS  Google Scholar 

  21. Forte P, Copland M, Smith L, et al.: Basal nitric oxide synthesis in essential hypertension. Lancet 1997, 349:837–842.

    Article  PubMed  CAS  Google Scholar 

  22. Kahn AM, Lichtenberg RA, Allen JC, et al.: Insulin-stimulated glucose transport inhibits Ca2+ influx and contraction in vascular smooth muscle. Circulation 1995, 92:1597–1603.

    PubMed  CAS  Google Scholar 

  23. Utriaien T, Makimattila S, Virkamaki A, et al.: Dissociation between insulin sensitivity of glucose metabolism and endothelial function in normal subjects. Diabetologia 1996, 39:1477–1482.

    Article  Google Scholar 

  24. Natali A, Taddei S, Galvan AQ, et al.: Insulin sensitivity, vascular reactivity and clamp-induced vasodilatation in essential hypertension. Circulation 1997, 96:849–855.

    PubMed  CAS  Google Scholar 

  25. Howard G, O’Leary DH, Zaccaro D, et al.: Insulin sensitivity and atherosclerosis. Circulation 1996, 93:1809–1817.

    PubMed  CAS  Google Scholar 

  26. UK Prospective Diabetes Study Group (UKPDS): Intensive blood glucose control with sulfonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes. Lancet 1998, 352:837–853. The UKPDS is the largest (3867 diabetic subjects) and the longestterm study (9-13 years) reported in diabetes. There was no evidence of increases in cardiovascular events or mortality in the group allocated to insulin compared with the groups receiving sulfonylurea agents.

    Article  Google Scholar 

  27. Malmberg K: Prospective randomised study of intensive insulin treatment on long-term survival after acute myocardial infarction in patients with diabetes melliltus. DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Myocardial Infarction) Study Group. BMJ 1997, 314:1512–1515. This study shows that insulin glucose infusion followed by intensive subcutaneous insulin in diabetic patients, with acute myocardial infarction, improved long-term survival providing support to the notion that exogenous insulin does not increase cardiovascular events in diabetic patients.

    PubMed  CAS  Google Scholar 

  28. Ross R: The pathogenesis of atherosclerosis—an update. N Engl J Med 1986, 314:488–500.

    Article  PubMed  CAS  Google Scholar 

  29. Xi X-P, Graf K, Goetz S, et al.: Inhibition of MAP kinase blocks insulin-mediated DNA synthesis and transcriptional activation of c-fos by Elk-1 in vascular smooth muscle cells. FEBS Lett 1997, 417:283–286.

    Article  PubMed  CAS  Google Scholar 

  30. Mikhail N, Fukuda N, Tremblay J, Hamet P: Platelets, growth factors, and vascular smooth-muscle cells in hypertension and diabetes. J Cardiovasc Pharmacol 1993, 22(suppl 6):64–74.

    Google Scholar 

  31. Avena R, Mitchell ME, Neville RF, Sidawy AN: The additive effects of glucose and insulin on the proliferation of infragenicular vascular smooth muscle cells. J Vasc Surg 1998, 28:1033–1039.

    Article  PubMed  CAS  Google Scholar 

  32. Grant PJ, Kruithof EKO, Felley CP, et al.: Short-term infusions of insulin, triaclglycerol and glucose do not cause acute increases in plasminogen activator inhibitor-1 concentrations in man. Clin Sci 1990, 79:513–516.

    PubMed  CAS  Google Scholar 

  33. Calles-Escandon J, Mirza SA, Sobel BE, Schneider DJ: Induction of hyperinsulinemia combined with hyperglycemia and hypertriglyceridemia increases plasminogen activator inhibitor 1 in blood in normal human subjects. Diabetes 1998, 47:290–293. This study underscores the importance of interaction of other coexistent risk factors in the insulin resistance syndrome with insulin.

    Article  PubMed  CAS  Google Scholar 

  34. Salomaa V, Riley W, Kark JD, et al.: Non-insulin-dependent diabetes mellitus and fasting glucose and insulin concentrations are associated with arterial stiffness indexes. The ARIC Study. Circulation 1995, 91:1432–1443.

    PubMed  CAS  Google Scholar 

  35. Hasdai D, Nielson M, Rizza R, et al.: Attenuated in vitro coronary vasorelaxation to insulin-like growth factor I in experimental hypercholesterolemia. Hypertension 1999, 34:89–95.

    PubMed  CAS  Google Scholar 

  36. Emoto M, Nishizawa Y, Kawagishi T, et al.: Stiffness indexes β of the common carotid and femoral arteries are associated with insulin resistance in NIDDM. Diabetes Care 1998, 21:1178–1182.

    Article  PubMed  CAS  Google Scholar 

  37. Westerbacka J, Vehkavaara S, Bergholm R, et al.: Marked resistance of the ability of insulin to decrease arterial stiffness characterizes β human obesity. Diabetes 1999, 48:821–827.

    Article  PubMed  CAS  Google Scholar 

  38. Hirai T, Sasyama S, Kawasaki T, Yagi S-J: Stiffness of systemic arteries in patients with myocardial infarction: a non-invasive method to predict severity of coronary atherosclerosis. Circulation 1989, 80:78–86.

    PubMed  CAS  Google Scholar 

  39. Tagagi T, Yoshida K, Akasaka T, et al.: Troglitazone reduces intimal hyperplasia after coronary stent implantation: a serial intravascular ultrasound study [abstract]. J Am Coll Cardiol 1999, 33(suppl):886–2.

    Google Scholar 

  40. Dunaif A, Segal KR, Futterweit W, et al.: Profound insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes 1989, 38:1165–1172.

    Article  PubMed  CAS  Google Scholar 

  41. Paradisi G, Steinberg HO, Hook G, et al.: Troglitazone therapy improves endothelial function in women with polycystic ovary syndrome. Diabetes 1999, 32(suppl):A128-A129.

    Google Scholar 

  42. Tack CJ, Ong MK, Lutterman JA, Smits P: Insulin-induced vasodilatation and endothelial function in obesity/insulin resistance. Effects of troglitazone. Diabetologia 1998, 41:569–576.

    Article  PubMed  CAS  Google Scholar 

  43. Minamikawa J, Tanaka S, Yamauchi M, et al.: Potent inhibitory effect of troglitazone on carotid wall thickness in type 2 diabetes. J Clin Endocrinol Metab 1998, 83:1818–1820. This study suggests that troglitazone may have beneficial effects on atherosclerosis in addition to its insulin-sensitizing action. Data derived from this study could stimulate use of the thiazolidinediones in conditions associated with insulin resistance even without diabetes.

    Article  PubMed  CAS  Google Scholar 

  44. Avena R, Mitchell ME, Nylen ES, et al.: Insulin action enhancement normalizes brachial artery vasoactivity in patients with peripheral vascular disease and occult diabetes. J Vasc Surg 1998, 28:1024–1032.

    Article  PubMed  CAS  Google Scholar 

  45. Cominacini L, Garbin U, Fratta-Pasini A, et al.: Troglitazone reduces LDL oxidation and lowers plasma E-selectin concentrations in NIDDM patients. Diabetes 1998, 47:130–133.

    Article  PubMed  CAS  Google Scholar 

  46. Law R, Meehan W, Xi X, et al.: Troglitazone inhibits vascular smooth muscle cell growth and intimal hyperplasia. J Clin Invest 1996, 98:1897–1905.

    Article  PubMed  CAS  Google Scholar 

  47. Goetze S, Xi X, Kawano Y, et al.: TNF-α-induced migration of vascular smooth muscle cells is MAPK dependent. Hypertension 1999, 33:183–189.

    PubMed  CAS  Google Scholar 

  48. Marx N, Schonbeck U, Lazar MA, et al.: Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res 1998, 83:1097–1103.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhail, N., Tuck, M.L. Insulin and the vasculature. Current Science Inc 2, 148–153 (2000). https://doi.org/10.1007/s11906-000-0074-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-000-0074-3

Keywords

Navigation