Skip to main content

Advertisement

Log in

The role of the renin-angiotensin system in aortic aneurysmal diseases

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

The renin-angiotensin system has been invoked in the development of both abdominal and thoracic aortic aneurysms. This has been demonstrated experimentally by the chronic subcutaneous infusion of angiotensin II, which consistently leads to development of abdominal aortic aneurysms (AAAs) in mice. Angiotensin II-induced AAAs have highly heterogenous cellular and extracellular matrix characteristics throughout the aorta that change markedly with infusion duration. The mechanistic basis for the reproducible location of AAA development has not been elucidated, but many insights have been provided, especially regarding receptor and inflammatory mechanisms. A recent clinical study provided limited evidence for extrapolating these results to mechanisms of human AAAs. Experimental evidence has also demonstrated that antagonism of angiotensin II type 1 (AT1) receptors prevents ascending aortic aneurysms in a murine model of Marfan’s syndrome. A clinical study is currently ongoing to demonstrate the efficacy of AT1 receptor antagonism in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Golledge J, Muller J, Daugherty A, Norman P: Abdominal aortic aneurysm. Pathogenesis and implications for management. Arterioscler Thromb Vasc Biol 2006, 26:2605–2613.

    Article  PubMed  CAS  Google Scholar 

  2. Ramirez F, Dietz HC: Marfan syndrome: from molecular pathogenesis to clinical treatment. Curr Opin Genet Dev 2007, 17:252–258.

    Article  PubMed  CAS  Google Scholar 

  3. Daugherty A, Cassis L: Angiotensin II and abdominal aortic aneurysms. Curr Hypertens Rep 2004, 6:442–446.

    Article  PubMed  Google Scholar 

  4. Daugherty A, Cassis LA: Mouse models of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2004, 24:429–434.

    Article  PubMed  CAS  Google Scholar 

  5. Daugherty A, Cassis L: Chronic angiotensin II infusion promotes atherogenesis in low density lipoprotein receptor-/-mice. Ann N Y Acad Sci 1999, 892:108–118.

    Article  PubMed  CAS  Google Scholar 

  6. Daugherty A, Manning MW, Cassis LA: Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest 2000, 105:1605–1612.

    Article  PubMed  CAS  Google Scholar 

  7. Wang YX, Martin-McNulty B, Freay AD, et al.: Angiotensin II increases urokinase-type plasminogen activator expression and induces aneurysm in the abdominal aorta of apolipoprotein E-deficient mice. Am J Pathol 2001, 159:1455–1464.

    PubMed  CAS  Google Scholar 

  8. Ishibashi M, Egashira K, Zhao Q, et al.: Bone marrow-derived monocyte chemoattractant protein-1 receptor CCR2 is critical in angiotensin II-induced acceleration of atherosclerosis and aneurysm formation in hypercholesterolemic mice. Arterioscler Thromb Vasc Biol 2004, 24:e174–e178.

    Article  PubMed  CAS  Google Scholar 

  9. Gavrila D, Li WG, McCormick ML, et al.: Vitamin E inhibits abdominal aortic aneurysm formation in angiotensin II-infused, apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2005, 25:1671–1617.

    Article  PubMed  CAS  Google Scholar 

  10. Zhou Y, Chen R, Catanzaro SE, et al.: Differential effects of angiotensin II on atherogenesis at the aortic sinus and descending aorta of apolipoprotein-E-deficient mice. Am J Hypertens 2005, 18:486–492.

    Article  PubMed  CAS  Google Scholar 

  11. Ayabe N, Babaev VR, Tang Y, et al.: Transiently heightened angiotensin II has distinct effects on atherosclerosis and aneurysm formation in hyperlipidemic mice. Atherosclerosis 2006, 184:312–321.

    Article  PubMed  CAS  Google Scholar 

  12. Eagleton MJ, Ballard N, Lynch E, et al.: Early increased MT1-MMP expression and late MMP-2 and MMP-9 activity during Angiotensin II induced aneurysm formation. J Surg Res 2006, 135:345–351.

    Article  PubMed  CAS  Google Scholar 

  13. Yoshimura K, Aoki H, Ikeda Y, et al.: Regression of abdominal aortic aneurysm by inhibition of c-Jun N-terminal kinase. Nat Med 2005, 11:1330–1338.

    Article  PubMed  CAS  Google Scholar 

  14. Cao RY, Adams MA, Habenicht AJ, Funk CD: Angiotensin II-induced abdominal aortic aneurysm occurs independently of the 5-lipoxygenase pathway in apolipoprotein E-deficient mice. Prostaglandins Other Lipid Mediat 2007, 84:34–42.

    Article  PubMed  CAS  Google Scholar 

  15. Ahluwalia N, Lin AY, Tager AM, et al.: Inhibited aortic aneurysm formation in BLT1-deficient mice. J Immunol 2007, 179:691–697.

    PubMed  CAS  Google Scholar 

  16. Vinh A, Gaspari TA, Liu HB, et al.: A novel histone deacetylase inhibitor reduces abdominal aortic aneurysm formation in angiotensin II-infused apolipoprotein E-deficient mice. J Vasc Res 2007, 45:143–152.

    Article  PubMed  Google Scholar 

  17. Deng GG, Martin-McNulty B, Sukovich DA, et al.: Urokinase-type plasminogen activator plays a critical role in angiotensin II-induced abdominal aortic aneurysm. Circ Res 2003, 92:510–517.

    Article  PubMed  CAS  Google Scholar 

  18. Manning MW, Cassis LA, Huang J, et al.: Abdominal aortic aneurysms: fresh insights from a novel animal model of the disease. Vasc Med 2002, 7:45–54.

    Article  PubMed  Google Scholar 

  19. Henriques TA, Huang J, D’souza SS, et al.: Orchiectomy, but not ovariectomy, regulates angiotensin II-induced vascular diseases in apolipoprotein E deficient mice. Endocrinology 2004, 145:3866–3872.

    Article  PubMed  CAS  Google Scholar 

  20. Saraff K, Babamusta F, Cassis LA, Daugherty A: Aortic dissection precedes formation of aneurysms and atherosclerosis in angiotensin II-infused, apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2003, 23:1621–1626.

    Article  PubMed  CAS  Google Scholar 

  21. Barisione C, Charnigo RJ, Howatt DA, et al.: Rapid dilation of the abdominal aorta during infusion of angiotensin II detected by noninvasive high frequency ultrasound. J Vasc Surg 2006, 44:372–376.

    Article  PubMed  Google Scholar 

  22. Rateri DL, Howatt DA, Xie X, et al.: Prolonged infusion of angiotensin II promotes abdominal aortic aneurysm remodeling associated with adventitial macrophage recruitment. Arterioscler Thromb Vasc Biol 2008, submitted.

  23. Powell JT, Brady AR: Detection, management, and prospects for the medical treatment of small abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2004, 24:241–245.

    Article  PubMed  CAS  Google Scholar 

  24. Liao S, Miralles M, Kelley BJ, et al.: Suppression of experimental abdominal aortic aneurysms in the rat by treatment with angiotensin-converting enzyme inhibitors. J Vasc Surg 2001, 33:1057–1064.

    Article  PubMed  CAS  Google Scholar 

  25. Furubayashi K, Takai S, Jin D, et al.: The significance of chymase in the progression of abdominal aortic aneurysms in dogs. Hypertens Res 2007, 30:349–357.

    Article  PubMed  CAS  Google Scholar 

  26. Daugherty A, Manning MW, Cassis LA: Antagonism of AT2 receptors augments angiotensin II-induced abdominal aortic aneurysms and atherosclerosis. Br J Pharmacol 2001, 134:865–870.

    Article  PubMed  CAS  Google Scholar 

  27. Cassis LA, Rateri DL, Lu H, Daugherty A: Bone marrow transplantation reveals that recipient AT1a receptors are required to initiate angiotensin II-induced atherosclerosis and aneurysms. Arterioscler Thromb Vasc Biol 2007, 27:380–386.

    Article  PubMed  CAS  Google Scholar 

  28. Cassis LA, Helton MJ, Howatt DA, et al.: Aldosterone does not mediate angiotensin II-induced atherosclerosis and abdominal aortic aneurysms. Br J Pharmacol 2005, 144:443–448.

    Article  PubMed  CAS  Google Scholar 

  29. Daugherty A, Ravisankar P, Szilvassy SJ, et al.: Angiotensin II infusion promotes ascending aortic aneurysms: attenuation by CCR2 deficiency. Arterioscler Thromb Vasc Biol 2008, submitted.

  30. Gitlin JM, Trivedi DB, Langenbach R, Loftin CD: Genetic deficiency of cyclooxygenase-2 attenuates abdominal aortic aneurysm formation in mice. Cardiovasc Res 2007, 73:227–236.

    Article  PubMed  CAS  Google Scholar 

  31. King VL, Trivedi D, Gitlin JM, Loftin CD: Selective cyclooxygenase-2 inhibition with celecoxib decreases angiotensin II-induced abdominal aortic aneurysm formation in mice. Arterioscler Thromb Vasc Biol 2006, 26:1137–1143.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang LN, Velichko S, Vincelette J, et al.: Interferon-beta attenuates angiotensin II-accelerated atherosclerosis and vascular remodeling in apolipoprotein E deficient mice. Atherosclerosis 2007, Epub ahead of print.

  33. Manning MW, Cassis LA, Daugherty A: Differential effects of doxycycline, a broad-spectrum matrix metalloproteinase inhibitor, on angiotensin II-induced atherosclerosis and abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 2003, 23:483–488.

    Article  PubMed  CAS  Google Scholar 

  34. Wen J, Wang P, Smith SV, et al.: Syndecans are differentially expressed during the course of aortic aneurysm formation. J Vasc Surg 2007, 46:1014–1025.

    Article  PubMed  Google Scholar 

  35. Jiang F, Jones GT, Dusting GJ: Failure of antioxidants to protect against angiotensin II-induced aortic rupture in aged apolipoprotein (E)-deficient mice. Br J Pharmacol 2007, 152:880–890.

    Article  PubMed  CAS  Google Scholar 

  36. Thomas M, Gavrila D, McCormick ML, et al.: Deletion of p47phox attenuates angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice. Circulation 2006, 114:404–413.

    Article  PubMed  CAS  Google Scholar 

  37. Gavazzi G, Deffert C, Trocme C, et al.: NOX1 deficiency protects from aortic dissection in response to angiotensin II. Hypertension 2007, 50:189–196.

    Article  PubMed  CAS  Google Scholar 

  38. Wang YX, Martin-McNulty B, da Cunha V, et al.: Fasudil, a Rho-kinase inhibitor, attenuates angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-deficient mice by inhibiting apoptosis and proteolysis. Circulation 2005, 111:2219–2226.

    Article  PubMed  CAS  Google Scholar 

  39. Martin-McNulty B, Tham DM, da Cunha V, et al.: 17 beta-estradiol attenuates development of angiotensin II induced aortic abdominal aneurysm in apolipoprotein E deficient mice. Arterioscler Thromb Vasc Biol 2003, 23:1627–1632.

    Article  PubMed  CAS  Google Scholar 

  40. Fatini C, Pratesi G, Sofi F, et al.: ACE DD genotype: a predisposing factor for abdominal aortic aneurysm. Eur J Vasc Endovasc Surg 2005, 29:227–232.

    Article  PubMed  CAS  Google Scholar 

  41. Yeung JM, Heeley M, Gray S, et al.: Does the angiotensin-converting enzyme (ACE) gene polymorphism affect rate of abdominal aortic aneurysm expansion? Eur J Vasc Endovasc Surg 2002, 24:69–71.

    Article  PubMed  CAS  Google Scholar 

  42. Claridge MW, Hobbs SD, Quick CR, et al.: ACE inhibitors increase type III collagen synthesis: a potential explanation for reduction in acute vascular events by ACE inhibitors. Eur J Vasc Endovasc Surg 2004, 28:67–70.

    Article  PubMed  CAS  Google Scholar 

  43. Lloyd GM, Newton JD, Norwood MG, et al.: Patients with abdominal aortic aneurysm: are we missing the opportunity for cardiovascular risk reduction? J Vasc Surg 2004, 40:691–697.

    Article  PubMed  CAS  Google Scholar 

  44. Hackam DG, Thiruchelvam D, Redelmeier DA: Angiotensin-converting enzyme inhibitors and aortic rupture: a population-based case-control study. Lancet 2006, 368:659–665.

    Article  PubMed  CAS  Google Scholar 

  45. Thompson RW, Baxter BT: MMP inhibition in abdominal aortic aneurysms. Rationale for a prospective randomized clinical trial. Ann N Y Acad Sci 1999, 878:159–178.

    Article  PubMed  CAS  Google Scholar 

  46. Habashi JP, Judge DP, Holm TM, et al.: Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 2006, 312:117–121.

    Article  PubMed  CAS  Google Scholar 

  47. Pannu H, Tran-Fadulu V, Papke CL, et al.: MYH11 mutations result in a distinct vascular pathology driven by insulin-like growth factor 1 and angiotensin II. Hum Mol Genet 2007, 16:3453–3462.

    Article  Google Scholar 

  48. Yetman AT, Bornemeier RA, McCrindle BW: Usefulness of enalapril versus propranolol or atenolol for prevention of aortic dilation in patients with the Marfan syndrome. Am J Cardiol 2005, 95:1125–1127.

    Article  PubMed  CAS  Google Scholar 

  49. Ahimastos AA, Aggarwal A, D’Orsa KM, et al.: Effect of perindopril on large artery stiffness and aortic root diameter in patients with Marfan syndrome: a randomized controlled trial. JAMA 2007, 298:1539–1547.

    Article  PubMed  CAS  Google Scholar 

  50. Lacro RV, Dietz HC, Wruck LM, et al.: Rationale and design of a randomized clinical trial of beta-blocker therapy (atenolol) versus angiotensin II receptor blocker therapy (losartan) in individuals with Marfan syndrome. Am Heart J 2007, 154:624–631.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Daugherty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, H., Rateri, D.L., Cassis, L.A. et al. The role of the renin-angiotensin system in aortic aneurysmal diseases. Current Science Inc 10, 99–106 (2008). https://doi.org/10.1007/s11906-008-0020-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-008-0020-3

Keywords

Navigation