Skip to main content
Log in

Neurometabolic disorders and dysfunction in autism spectrum disorders

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

The cause of autism remains largely unknown because it is likely multifactorial, arising from the interaction of biologic, genetic, and environmental factors. The specific role of metabolic abnormalities also is largely unknown, but current research may provide insight into the pathophysiologic underpinnings of autism, at least in some patients. We review a number of known neurometabolic disorders identified as having an autistic phenotype. We also discuss the possible involvement of mitochondrial disorders and dysfunction as well as a theory regarding an increased vulnerability to oxidative stress, by which various environmental toxins produce metabolic alterations that impair normal cellular function. Finally, we review various strategies for metabolic work-up and treatment. Accurate diagnosis of neurometabolic disorders and a broader understanding of underlying metabolic disturbance even in the absence of known disease have important implications both for individual patients and for research into the etiology of autism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Eisensmith RC, Goltsov AA, O’Neill C, et al.: Recurrence of the R408W mutation in the phenylalanine hydroxylase locus in Europeans. Am J Hum Genet 1995, 56:278–286.

    PubMed  CAS  Google Scholar 

  2. Lowe TL, Tanaka K, Seashore MR, et al.: Detection of phenylketonuria in autistic and psychotic children. JAMA 1980, 243:126–128.

    Article  PubMed  CAS  Google Scholar 

  3. Jaeken J, Wadman SK, Duran M, et al.: Adenylosuccinase deficiency: an inborn error of purine nucleotide synthesis. Eur J Pediatr 1988, 148:126–131.

    Article  PubMed  CAS  Google Scholar 

  4. Bottini N, De Luca D, Saccucci P, et al.: Autism: evidence of association with adenosine deaminase genetic polymorphism. Neurogenetics 2001, 3:111–113.

    Article  PubMed  CAS  Google Scholar 

  5. Manzi B, Loizzo AL, Giana G, et al.: Autism and metabolic diseases. J Child Neurol 2008, 23:307–314.

    Article  PubMed  Google Scholar 

  6. Ganesan V, Johnson A, Connelly A, et al.: Guanidinoacetate methyltransferase deficiency: new clinical features. Pediatr Neurol 1997, 17:155–157.

    Article  PubMed  CAS  Google Scholar 

  7. Weber P, Scholl S, Baumgartner ER: Outcome in patients with profound biotinidase deficiency: relevance of newborn screening. Dev Med Child Neurol 2004, 46:481–484.

    Article  PubMed  Google Scholar 

  8. Zaffanello M, Zamboni G, Fontana E, et al.: A case of partial biotinidase deficiency associated with autism. Child Neuropsychol 2003, 9:184–188.

    PubMed  Google Scholar 

  9. Wevers RA, Hansen SI, van Hellenberg Hubar JL, et al.: Folate deficiency in cerebrospinal fluid associated with a defect in folate binding protein in the central nervous system. J Neurol Neurosurg Psychiatry 1994, 57:223–226.

    Article  PubMed  CAS  Google Scholar 

  10. Moretti P, Peters SU, Del Gaudio D, et al.: Brief report: autistic symptoms, developmental regression, mental retardation, epilepsy, and dyskinesias in CNS folate deficiency. J Autism Dev Disord 2008, 38:1170–1177.

    Article  PubMed  Google Scholar 

  11. Pearl PL, Gibson KM, Acosta MT, et al.: Clinical spectrum of succinic semialdehyde dehydrogenase deficiency. Neurology 2003, 60:1413–1417.

    PubMed  CAS  Google Scholar 

  12. Knerr I, Gibson KM, Jakobs C, Pearl PL:Neuropsychiatric morbidity in adolescent and adult succinic semialdehyde dehydrogenase deficiency patients. CNS Spectr 2008, 13:598–605.

    PubMed  Google Scholar 

  13. Marcos J, Guo LW, Wilson WK, et al.: The implications of 7-dehydrosterol-7-reductase deficiency (Smith-Lemli-Opitz syndrome) to neurosteroid production. Steroids 2004, 69:51–60.

    Article  PubMed  CAS  Google Scholar 

  14. Mellon SH, Griffin LD: Neurosteroids: biochemistry and clinical significance. Trends Endocrinol Metab 2002, 13:35–43.

    Article  PubMed  CAS  Google Scholar 

  15. Tierney E, Bukelis I, Thompson RE, et al.: Abnormalities of cholesterol metabolism in autism spectrum disorders. Am J Med Genet B Neuropsychiatr Genet 2006, 141B:666–668.

    Article  PubMed  Google Scholar 

  16. Wallace DC: Mitochondrial diseases in man and mouse. Science 1999, 283:1482–1488.

    Article  PubMed  CAS  Google Scholar 

  17. Holt IJ, Harding AE, Petty RK, et al.: A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet 1990, 46:428–433.

    PubMed  CAS  Google Scholar 

  18. Wallace DC:Mitotic segregation of mitochondrial DNAs in human cell hybrids and expression of chloramphenicol resistance. Somat Cell Mol Genet 1986, 12:41–49.

    Google Scholar 

  19. Schon EA, DiMauro S: Mitochondrial mutations: genotype to phenotype. Novartis Found Symp 2007, 287:214–225; discussion 226–233.

    Article  PubMed  CAS  Google Scholar 

  20. Lerman-Sagie T, Leshinsky-Silver E, Watemberg N, et al.: Should autistic children be evaluated for mitochondrial disorders? J Child Neurol 2004, 19:379–381.

    Article  PubMed  Google Scholar 

  21. Pons R, Andreu AL, Checcarelli N, et al.: Mitochondrial DNA abnormalities and autistic spectrum disorders. J Pediatr 2004, 144:81–85.

    Article  PubMed  CAS  Google Scholar 

  22. Filiano JJ, Goldenthal MJ, Rhodes CH, et al.: Mitochondrial dysfunction in patients with hypotonia, epilepsy, autism, and developmental delay: HEADD syndrome. J Child Neurol 2002, 17:435–439.

    Article  Google Scholar 

  23. Tsao CY, Mendell JR: Autistic disorder in 2 children with mitochondrial disorders. J Child Neurol 2007, 22:1121–1123.

    Article  PubMed  Google Scholar 

  24. Oliveira G, Diogo L, Grazina M, et al.: Mitochondrial dysfunction in autism spectrum disorders: a population-based study. Dev Med Child Neurol 2005, 47:185–189.

    Article  PubMed  CAS  Google Scholar 

  25. Poling JS, Frye RE, Shoffner J, et al.: Developmental regression and mitochondrial dysfunction in a child with autism. J Child Neurol 2006, 21:170–172.

    Article  PubMed  Google Scholar 

  26. Lombard J: Autism: a mitochondrial disorder? Med Hypotheses 1998, 50:497–500.

    Article  PubMed  CAS  Google Scholar 

  27. Rossignol D, Bradstreet JJ: Evidence of mitochondrial dysfunction in autism and implications for treatment. Am J Biochem Biotechnol 2008, 4:208–217.

    Article  CAS  Google Scholar 

  28. Deth R, Muratore C, Benzecry J, et al.: How environmental and genetic factors combine to cause autism: a redox/methylation hypothesis. Neurotoxicology 2008, 29:190–201.

    Article  PubMed  CAS  Google Scholar 

  29. Valko M, Morris H, Cronin MT: Metals, toxicity and oxidative stress. Curr Med Chem 2005, 12:1161–1208.

    Article  PubMed  CAS  Google Scholar 

  30. Lanphear BP, Hornung R, Khoury J, et al.: Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ Health Perspect 2005, 113:894–899.

    Article  PubMed  CAS  Google Scholar 

  31. Domingo JL: Aluminum and other metals in Alzheimer’s disease: a review of potential therapy with chelating agents. J Alzheimers Dis 2006, 10:331–341.

    PubMed  Google Scholar 

  32. Mellick GD:CYP450, genetics and Parkinson’s disease: gene x environment interactions hold the key. J Neural Transm Suppl 2006, (70):159–165.

  33. James SJ, Cutler P, Melnyk S, et al.: Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 2004, 80:1611–1617.

    PubMed  CAS  Google Scholar 

  34. Waly M, Olteanu H, Banerjee R, et al.: Activation of methionine synthase by insulin-like growth factor-1 and dopamine: a target for neurodevelopmental toxins and thimerosal. Mol Psychiatry 2004, 9:358–370.

    Article  PubMed  CAS  Google Scholar 

  35. James SJ, Melnyk S, Jernigan S, et al.: Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet B Neuropsychiatr Genet 2006, 141B:947–956.

    Article  PubMed  CAS  Google Scholar 

  36. Reed MC, Thomas RL, Pavisic J, et al.: A mathematical model of glutathione metabolism. Theor Biol Med Model 2008, 5:8.

    Article  PubMed  CAS  Google Scholar 

  37. Ming X, Stein TP, Brimacombe M, et al.: Increased excretion of a lipid peroxidation biomarker in autism. Prostaglandins Leukot Essent Fatty Acids 2005, 73:379–384.

    Article  PubMed  CAS  Google Scholar 

  38. Chauhan A, Chauhan V, Brown W, et al.: Oxidative stress in autism: increased lipid peroxidation and reduced levels of ceruloplasmin and transferring—the antioxidant proteins. Life Sci 2004, 75:2539–2549.

    Article  PubMed  CAS  Google Scholar 

  39. Yao Y, Walsh WJ, McGinnis WR, et al.: Altered vascular phenotype in autism: correlation with oxidative stress. Arch Neurol 2006, 63:1161–1164.

    Article  PubMed  Google Scholar 

  40. Schaefer GB, Lutz RE: Diagnostic yield in the clinical genetic evaluation of autism spectrum disorders. Genet Med 2006, 8:549–556.

    PubMed  Google Scholar 

  41. Filipek PA, Accardo PJ, Ashwal S, et al.: Practice parameter: screening and diagnosis of autism: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Child Neurology Society. Neurology 2000, 55:468–479.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah J. Spence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zecavati, N., Spence, S.J. Neurometabolic disorders and dysfunction in autism spectrum disorders. Curr Neurol Neurosci Rep 9, 129–136 (2009). https://doi.org/10.1007/s11910-009-0021-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-009-0021-x

Keywords

Navigation