Skip to main content

Advertisement

Log in

Hereditary spastic paraplegia

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

The hereditary spastic paraplegias (HSPs) comprise a large group of inherited neurologic disorders. HSP is classified according to the mode of inheritance, the HSP locus when known, and whether the spastic paraplegia syndrome occurs alone or is accompanied by additional neurologic or systemic abnormalities. Analysis of 11 recently discovered HSP genes provides insight into HSP pathogenesis. Hereditary spastic paraplegia is a clinical diagnosis for which laboratory confirmation is sometimes possible, and careful exclusion of alternate and co-existing disorders is an important element in HSP diagnosis. Treatment for HSP is presently limited to symptomatic reduction of muscle spasticity, reduction in urinary urgency, and strength and gait improvement through physical therapy. Prenatal genetic testing in HSP is possible for some individuals with the increasing availability of HSP gene analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Fink JK: Hereditary spastic paraplegia. In Emery & Rimoin’s Principles and Practice of Medical Genetics, edn 4. Edited by Rimoin D, Pyeritz RE, Connor J, Korf B. London: Harcourt Publishers Limited, UK; 2002:3124–3145. A good overview of the subject.

    Google Scholar 

  2. Fink JK: Hereditary spastic paraplegia. In Neurology: Basic and Clinical Neurosciences. Edited by Schapira AH. New York: Elsevier Academic Press; 2005: In press.

    Google Scholar 

  3. Fink JK, Heiman-Patterson T, Bird T, et al.: Hereditary spastic paraplegia: advances in genetic research. Neurology 1996, 46:1507–1514.

    PubMed  CAS  Google Scholar 

  4. Fink JK, Hedera P: Hereditary spastic paraplegia: genetic heterogeneity and genotype-phenotype correlation. Semin Neurol 1999, 19:301–310.

    PubMed  CAS  Google Scholar 

  5. Polo AE, Calleja J, Combarros O, Bericiano J: Hereditary ataxias and paraplegias in Cantabria,Spain: an epidemiological and clinical study. Brain 1991, 114:855–856.

    Article  PubMed  Google Scholar 

  6. Filla A, DeMichele G, Marconi R, et al.: Prevalence of hereditary ataxias and spastic paraplegias in Molise, a region of Italy. J Neurol 1992, 239:351–353.

    Article  PubMed  CAS  Google Scholar 

  7. Nielsen JE, Johnsen B, Koefoed P, et al.: Hereditary spastic paraplegia with cerebellar ataxia: a complex phenotype associated with a new SPG4 gene mutation. Eur J Neurol 2004, 11:817–824.

    Article  PubMed  CAS  Google Scholar 

  8. Meyer T, Schwan A, Dullinger JS, et al.: Early-onset ALS with long-term survival associated with spastin gene mutation. Neurology 2005, 65:141–143.

    Article  PubMed  CAS  Google Scholar 

  9. Deluca GC, Ebers GC, Esiri MM: The extent of axonal loss in the long tracts in hereditary spastic paraplegia. Neuropathol Appl Neurobiol 2004, 30:576–584.

    Article  PubMed  CAS  Google Scholar 

  10. Fink JK: Hereditary spastic paraplegia: nine genes and counting. Arch Neurol 2003, 60:1045–1049.

    Article  PubMed  Google Scholar 

  11. Schwarz GA, Liu CN: Hereditary (familial) spastic paraplegia. Further clinical and pathologic observations. AMA Arch Neurol Psychiatry 1956, 75:144–162.

    PubMed  CAS  Google Scholar 

  12. Behan W, Maia M: Strumpell’s familial spastic paraplegia: genetics and neuropathology. J Neurol Neurosurg Psychiatry 1974, 37:8–20.

    PubMed  CAS  Google Scholar 

  13. Harding AE: Hereditary spastic paraplegias. Semin Neurol 1993, 13:333–336.

    PubMed  CAS  Google Scholar 

  14. Sack GH, Huether CA, Garg N: Familial spastic paraplegia: clinical and pathologic studies in a large kindred. Johns Hopkins Med J 1978, 143:117–121.

    PubMed  CAS  Google Scholar 

  15. Buge A, Escourolle R, Rancurel G, et al.: Strumpell-Lorrains familial spasmodic paraplegia — anatomical and clinical review and report on a new case. Rev Neurol (Paris) 1979, 135:329–337.

    CAS  Google Scholar 

  16. Reid E, Kloos M, Ashley-Koch A, et al.: A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am J Hum Genet 2002, 71:1189–1194.

    Article  PubMed  CAS  Google Scholar 

  17. Zhao C, Takita J, Tanaka Y, et al.: Charcot-Marie-Tooth disease type2A caused by mutation in a microtubule motor KIF1B-beta. Cell 2001, 105:587–597.

    Article  PubMed  CAS  Google Scholar 

  18. Gould RM, Brady ST: Neuropathology: many paths lead to hereditary spastic paraplegia. Curr Biol 2004, 14:R903-R904.

    Article  PubMed  CAS  Google Scholar 

  19. Sherwood NT, Sun Q, Xue M, et al.: Drosophila spastin regulates synaptic microtubule networks and is required for normal motor function. PLoS Biol 2004, 2:e429.

    Article  PubMed  CAS  Google Scholar 

  20. Roll-Mecak A, Vale RD: The drosophila homologue of the hereditary spastic paraplegia protein, spastin, severs and disassembles microtubules. Curr Biol 2005, 15:650–655.

    Article  PubMed  CAS  Google Scholar 

  21. Reid E, Connell J, Edwards TL, et al.: The hereditary spastic paraplegia protein spastin interacts with the ESCRT-III complex-associated endosomal protein CHMP1B. Hum Mol Genet 2004, 10:178–184.

    Google Scholar 

  22. McDermott CJ, Grierson AJ, Wood JD, et al.: Hereditary spastic paraparesis: disrupted intracellular transport associated with spastin mutation. Ann Neurol 2003, 54:748–759.

    Article  PubMed  Google Scholar 

  23. Wharton SB, McDermott CJ, Grierson AJ, et al.: The cellular and molecular pathology of the motor system in hereditary spastic paraparesis due to mutation of the spastin gene. J Neuropathol Exp Neurol 2003, 62:1166–1177.

    PubMed  CAS  Google Scholar 

  24. Molon A, DiGiovanni S, Chen YW, et al.: Large-scale disruption of microtubule pathways in morphologically normal human spastin muscle. Neurology 2004, 62:97–104.

    Article  CAS  Google Scholar 

  25. Trotta N, Orso G, Rossetto MG, et al.: The hereditary spastic paraplegia gene, spastin, regulates microtubule stability to modulate synaptic structure and function. Curr Biol 2004, 14:1135–1147.

    Article  PubMed  CAS  Google Scholar 

  26. Errico A, Claudiani P, D’Addio M, Rugarli EI: Spastin interacts with the centrosomal protein NA14, and is enriched in the spindle pole, the midbody, and the distal axon. Hum Mol Genet 2004, 13:2121–2132.

    Article  PubMed  CAS  Google Scholar 

  27. Evans KJ, Omes ER, Reisenweber SM, et al.: Linking axonal degeneration to microtubule remodeling by Spastin-mediated microtubule severing. J Cell Biol 2005, 168:599–606.

    Article  PubMed  CAS  Google Scholar 

  28. Proukakis C, Auer-Grumbach M, Wagner K, et al.: Screening of patients with hereditary spatic paraplegia reveals sevennovel mutations in the SPG4 (Spastin) gene. Hum Mutat 2003, 21:170.

    Article  PubMed  CAS  Google Scholar 

  29. Zhu PP, Patterson A, Lavoie B, et al.: Cellular localization, oligomerization, and membrane association of the hereditary spastic paraplegia 3A (SPG3A) protein atlastin. J Biol Chem 2003, 278:49063–49071.

    Article  PubMed  CAS  Google Scholar 

  30. Crosby AH, Patel H, Patton MA, et al.: Spartin, the Troyer syndrome gene, suggests defective endosomal trafficking underlies some forms of hereditary spastic paraplegia. Am J Hum Genet 2002, 71:516.

    Article  Google Scholar 

  31. Hansen JJ, Durr A, Cournu-Rebeix I, et al.: Hereditary spastic paraplegia SPG13 is associated with a muatation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 2002, 70:1328–1332.

    Article  PubMed  CAS  Google Scholar 

  32. Atorino L, Silvestri L, Koppen M, et al.: Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia. J Cell Biol 2003, 163:777–787.

    Article  PubMed  CAS  Google Scholar 

  33. Ferreirinha F, Quattrini A, Pirozzi M, et al.: Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J Clin Invest 2004, 113:231–242.

    PubMed  CAS  Google Scholar 

  34. Wilkinson PA, Crosby AH, Turner C, et al.: A clinical and genetic study of SPG5A linked autosomal recessive hereditary spastic paraplegia. Neurology 2003, 61:235–238.

    PubMed  CAS  Google Scholar 

  35. Casari G, Fusco M, Ciarmatori S, et al.: Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 1998, 93:973–983.

    Article  PubMed  CAS  Google Scholar 

  36. DeMichele G, DeFusco M, Cavalcanti F, et al.: A new locus for autosomal recessive hereditary spastic paraplegia maps to chromosome 16q24.3. Am J Hum Genet 1998, 63:135–139.

    Article  CAS  Google Scholar 

  37. Hodes ME, Zimmerman AW, Aydanian A, et al.: Different mutations in the same codon of the proteolipid protein gene, PLP, may help in correlating genotype with phenotype in Pelizaeus-Merzbacher disease/X-linked spastic paraplegia (PMD/SPG2). Am J Med Genet 1999, 82:132–139.

    Article  PubMed  CAS  Google Scholar 

  38. Willard HF, Riordan JR: Assignment of the gene for myelin proteolipid protein to the X chromosome: implications for X-linked myelin disorders. Science 1985, 230:940–942.

    Article  PubMed  CAS  Google Scholar 

  39. Hudson LD: Pelizaeus-Merzbacher disease and spastic paraplegia type 2: two faces of myelin loss from mutations in the same gene. J Child Neurol 2003, 18:616–624.

    Article  PubMed  Google Scholar 

  40. Garbern JY, Yool DA, Moore GJ, et al.: Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent axonal degeneration in the absence of demyelination and inflammation. Brain 2002, 125:551–561.

    Article  PubMed  Google Scholar 

  41. Bateman A, Jouet M, MacFarlane J, et al.: Outline structure of the human L1 cell adhesion molecule and the sites where mutations cause neurological disorders. EMBO J 1996, 15:6050–6059.

    PubMed  CAS  Google Scholar 

  42. Rainier S, Sher C, Reish O, et al.: De novo occurrence of novel SPG3A/atlastin mutation presenting as cerebral palsy. Arch Neurol 2005, In press.

  43. Heinzlef O, Paternotte C, Mahieux F, et al.: Mapping of a complicated familial spastic paraplegia to locus SPG4 on chromosome 2p. J Med Genet 1998, 35:89–93.

    PubMed  CAS  Google Scholar 

  44. Lizcano-Gil LA, Garcia-Cruz D, Bernal-Beltran MD, Hernandez A: Association of late onset spastic paraparesis and dementia: Probably an autosomal dominant form of complicated paraplegia. Am J Med Genet 1997, 68:1–6.

    Article  PubMed  CAS  Google Scholar 

  45. Webb S, Coleman D, Byrne P, et al.: Autosomal dominant hereditary spastic paraparesis with cognitive loss linked to chromosome 2p. Brain 1998, 121:601–609.

    Article  PubMed  Google Scholar 

  46. Byrne PC, Webb S, McSweeney F, et al.: Linkage of AD HSP and cognitive impairment to chromosome 2p: haplotype and phenotype analysis indicates variable expression and low or delayed penetrance. Eur J Human Genet 1998, 6:275–282.

    Article  CAS  Google Scholar 

  47. Reid E, Grayson C, Rubinsztein DC, et al.: Subclinical cognitive impairment in autosomal dominant ‘pure’ hereditary spastic paraplegia. J Med Genet 1999, 36:797–798.

    PubMed  CAS  Google Scholar 

  48. Tedeschi G, Allocca S, DiCostanzo A, et al.: Multisystem involvement of the central nervous system in Strumpell’s disease. A neurophysiological and neuropsychological study. J Neurol Sci 1991, 103:55–60.

    Article  PubMed  CAS  Google Scholar 

  49. McMonagle P, Byrne P, Hutchinson M: Further evidence of dementia in SPG4-linked autosomal dominant hereditary spastic paraplegia. Neurology 2004, 62:407–410.

    PubMed  Google Scholar 

  50. Tallaksen CM, Gomez EG, Verpillat P, Hahn-Barma V: Subtle cognitive impairment but no dementia in patients with spastin mutations. Arch Neurol 2003, 60:1113–1118.

    Article  PubMed  Google Scholar 

  51. Klebe S, Stolze H, Kopper F, et al.: Gait analysis of sporadic and hereditary spastic paraplegia. J Neurol 2004, 251:571–578.

    Article  PubMed  CAS  Google Scholar 

  52. Harding AE: Classification of the Hereditary Ataxias and Paraplegias. Lancet 1983, 1:1151–1155.

    Article  PubMed  CAS  Google Scholar 

  53. Fink JK: Progressive spastic paraparesis: hereditary spastic paraplegia and it’s relation to primary and amyotrophic lateral sclerosis. Semin Neurol 2001, 21:199–208.

    Article  PubMed  CAS  Google Scholar 

  54. Cross HE, McKusick VA: The Troyer syndrome. A recessive form of spastic paraplegia with distal muscle wasting. Arch Neurol 1967, 16:473–485.

    PubMed  CAS  Google Scholar 

  55. Patel H, Hart PE, Warner TT, et al.: The silver syndrome variant of hereditary spastic paraplegia maps to chromosome 11q12-q14, with evidence for genetic heterogeneity within this subtype. Am J Hum Genet 2001, 69:209–215.

    Article  PubMed  CAS  Google Scholar 

  56. Windpassinger C, Auer-Grumbach M, Irobi J, et al.: Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome. Nat Genet 2004, 36:271–276.

    Article  PubMed  CAS  Google Scholar 

  57. Sauter SM, Engel W, Neumann LM, et al.: Novel mutations in the Atlastin gene (SPG3A) in families with autosomal dominant hereditary spastic paraplegia and evidence for late onset forms of HSP linked to the SPG3A locus. Hum Mutat 2004, 23:98.

    Article  PubMed  CAS  Google Scholar 

  58. Abel A, Fonknec Nen N, et al.: Early onset autosomal dominant spastic paraplegia caused by novel mutations in SPG3A. Neurogenetics 2004, 5:239–243.

    Article  PubMed  CAS  Google Scholar 

  59. Tessa A, Casali C, Damiano M, et al.: SPG3A. An additional family carrying a new atlastin mutation. Neurology 2002, 59:2002–2005.

    PubMed  CAS  Google Scholar 

  60. Hentati A, Pericak-Vance MA, Lennon F, et al.: Linkage of the late onset autosomal dominant familial spastic paraplegia to chromosome 2p markers. Hum Mol Genet 1994, 3:1867–1871.

    Article  PubMed  CAS  Google Scholar 

  61. Yip AG, Durr A, Marchuk DA, et al.: Meta-analysis of age at onset in spastin-associated hereditary spastic paraplegia provides no evidence for a correlation with mutational class. J Med Genet 2003, 40:e106.

    Article  PubMed  CAS  Google Scholar 

  62. Dalpozzo F, Rossetto MG, Boaretto MS, et al.: Infancy onset hereditary spastic paraplegia associated with a novel atlastin mutation. Neurology 2003, 61:580–581.

    PubMed  CAS  Google Scholar 

  63. Venson IK, Kloos M, Gaskell PC, et al.: An intragenic modifier of hereditary spastic paraplegia due to spastin gene mutation suggests a role for cyclin-dependent kinase 5 in HSP pathogenesis. Neurogenetics 2004, 5:157–164.

    Article  CAS  Google Scholar 

  64. Nielsen JE, Koefoed P, Abell K, et al.: CAG repeat expansion in autosomal dominant pure spastic paraplegia linked to chromosome 2p21-p24. Hum Mol Genet 1997, 6:1811–1816.

    Article  PubMed  CAS  Google Scholar 

  65. O’Neill BP, Swanson JW, Brown IFR, et al.: Familial spastic paraparesis: An adrenoleukodystrophy phenotype? Neurology 1985, 35:1233–1235.

    PubMed  CAS  Google Scholar 

  66. Shaw-Smith CJ, Lewis SJ, Reid E: X-linked adrenoleukodystrophy presenting as autosomal dominant pure hereditary spastic paraparesis. J Neurol Neurosurg Psychiatry 2004, 75:686–688.

    Article  PubMed  CAS  Google Scholar 

  67. Matsumura R, Takayanagi T, Fujimoto Y, et al.: The relationship between trinucleotide repeat length and phenotypic variation in Machado-Joseph disease. J Neurol Sci 1996, 139:52–57.

    Article  PubMed  CAS  Google Scholar 

  68. Nygaard TG: Dopa-responsive dystonia: clinical, pathological, and genetic distinction from juvenile parkinsonism. In Age-related Dopamine-dependent Disorders. Monographs in Neural Science, vol 14, edn 1. Edited by Segawa M, Nomura Y. Basel: Karger; 1995:109–119.

    Google Scholar 

  69. Fink JK, Filling-Katz M, Barton NW, et al.: Treatable dystonia presenting as spastic cerebral palsy. Pediatrics 1988, 82:138.

    Google Scholar 

  70. Zhao X, Alvarado D, Rainier S, et al.: Mutations in a novel GTPase cause autosomal dominant hereditary spastic paraplegia. Nat Genet 2001, 29:326–331.

    Article  PubMed  CAS  Google Scholar 

  71. Hazan J, Fontaine B, Bruyn RP, et al.: Linkage of a new locus for autosomal dominant familial spastic paraplegia to chromosome 2p. Hum Mol Genet 1994, 3:1569–1573.

    Article  PubMed  CAS  Google Scholar 

  72. Rainier S, Chai JH, Tokarz D, et al.: NIPA1 gene mutations cause autosomal dominant hereditary spastic paraplegia (SPG6). Am J Hum Genet 2003, 73:967–971.

    Article  PubMed  CAS  Google Scholar 

  73. Nielsen JE, Koefoed P, Kjaergaard S, et al.: Prenatal diagnosis of autosomal dominant hereditary spastic paraplegia (SPG4) using direct mutation detection. Prenat Diagn 2004, 24:363–366.

    Article  PubMed  CAS  Google Scholar 

  74. Hedera P, Williamson J, Alvarado D, et al.: Prenatal diagnosis of hereditary spastic paraplegia. Prenat Diagn 2001, 21:202–206.

    Article  PubMed  CAS  Google Scholar 

  75. Casali C, Valente EM, Bertini E, et al.: Clinical and genetic studies in hereditary spastic paraplegia with thin corpus callosum. Am J Hum Genet 2002, 71:432.

    Article  Google Scholar 

  76. Hedera P, Eldevik OP, Maly P, et al.: Spinal cord magnetic resonance imaging in autosomal dominant hereditary spastic paraplegia. Neuroradiology 2005, In press.

  77. Schady W, Scheard A: A qualitative study of sensory functions in hereditary spastic paraplegia. Brain 1990, 113:709–720.

    Article  PubMed  Google Scholar 

  78. Schady W, Smith DI: Sensory neuropathy in hereditary spastic paraplegia. J Neurol Neurosurg Psychiatr 1994, 57:693–698.

    PubMed  CAS  Google Scholar 

  79. Pelosi L, Lanzillo B, Perretti A: Motor and somatosensory evoked potentials in hereditary spastic paraplegia. J Neurol Neurosurg Psychiatry 1991, 54:1099–1102.

    PubMed  CAS  Google Scholar 

  80. Pedersen L, Trojaborg W: Visual, auditory and somatosensory pathway involvement in hereditary cerebellar ataxia, Friedreich’s ataxia and familial spastic paraplegia. Electroencephalogr Clin Neurophysiol 1981, 52:283–297.

    Article  PubMed  CAS  Google Scholar 

  81. Uncini A, Treviso M, Basciani M, Gambi D: Strumpell’s familial spastic paraplegia: an electrophysiological demonstration of selective central distal axonopathy. Electroencephalogr Clin Neurophysiol 1987, 66:132–136.

    Article  PubMed  CAS  Google Scholar 

  82. Dimitrijevic MR, Lenman JA, Prevec T, Wheatly K: A study of posterior column function in familial spastic paraplegia. J Neurol Neurosurg Psychiatry 1982, 45:46–49.

    Article  PubMed  CAS  Google Scholar 

  83. Battistella PA, Suppiej A, Mandara V: Evoked potentials in familial spastic paraplegia: description of three brothers and review of the literature. Giorn Neuropsi Evol 1997, 17:201–212.

    Google Scholar 

  84. Schulte T, Miterski B, Bornke C, et al.: Neurophysiological findings in SPG4 patients differ from other types of spastic paraplegia. Neurology 2003, 60:1529–1532.

    PubMed  CAS  Google Scholar 

  85. Nardone R, Tezzon F: Transcranial magnetic stimulation study in hereditary spastic paraparesis. Eur Neurol 2003, 49:234–237.

    Article  PubMed  CAS  Google Scholar 

  86. Claus D, Waddy HM, Harding AE: Hereditary motor and sensory neuropathies and hereditary spastic paraplegia: a magnetic stimulation study. Ann Neurol 1990, 28:43–49.

    Article  PubMed  CAS  Google Scholar 

  87. Claus D, Jaspert A: Central motor conduction in hereditary spastic paraparesis (Strumpell’s disease) and tropical spastic paraparesis. Neurol Croatica 1995, 44:23–31.

    Google Scholar 

  88. Dan B, Bouillot E, Bengoetxea A, Cheron G: Effect of intrathecal baclofen on gait control in human hereditary spastic paraparesis. Neurosci Lett 2000, 280:176–178.

    Article  Google Scholar 

  89. Meythaler JM, Steers WD, Tuel SM, et al.: Intrathecal baclofen in hereditary spastic paraparesis. Arch Phys Med Rehabil 1992, 73:794–797.

    PubMed  CAS  Google Scholar 

  90. Van Schaeybroeck P, Nuttin B, Lagae L, et al.: Intrathecal baclofen for intractable cerebral spasticity: a prospective placebo-controlled, double-blind study. Neurosurgery 2000, 46:603–612.

    Article  PubMed  Google Scholar 

  91. Depienne C, Tallaksen C, Lephay JY, et al.: Spastin mutations in patients with sporadic spastic paraparesis. Am J Hum Genet 2005, In press.

  92. Patrono C, Scarano V, Cricchi F, et al.: Autosomal dominant hereditary spastic paraplegia: DHPLC-based mutation analysis of SPG4 reveals eleven novel mutations. Hum Mutat 2005, 25:506.

    Article  PubMed  Google Scholar 

  93. Sauter S, Miterski B, Klimpe S: Mutation analysis of the spastin gene (SPG4) in patients in Germany with autosomal dominant hereditary spastic paraplegia. Hum Mutat 2002, 20:127–132.

    Article  PubMed  CAS  Google Scholar 

  94. Durr A, Davoine CS, Paternotte C, et al.: Phenotype of autosomal dominant spastic paraplegia linked to chromosome 2. Brain 1996, 119:1487–1496.

    Article  PubMed  Google Scholar 

  95. Fonknecten N, Mavel D, Byrne P, et al.: Spectrum of SPG4 mutations in autosomal dominant spastic paraplegia. Hum Mol Genet 2000, 9:637–644.

    Article  Google Scholar 

  96. Hedera P, DiMauro S, Bonilla E, et al.: Phenotypic analysis of autosomal dominant hereditary spastic paraplegia linked to chromosome 8q. Neurology 1999, 53:44–50.

    Article  PubMed  CAS  Google Scholar 

  97. Durr A, Camuzat A, Colin E, et al.: : Atlastin1 mutations are frequent in young-onset autosomal dominant spastic paraplegia. Arch Neurol 2004, 61:1867–1872.

    Article  PubMed  Google Scholar 

  98. D’Amico A, Tessa A, Sabino A, et al.: Incomplete penetrance in an SPG3A-linked family with a new mutation in the atlastin gene. Neurology 2004, 62:2138–2139.

    PubMed  CAS  Google Scholar 

  99. Fink JK: Hereditary spastic paraplegia. In Neuromuscular Disorders in Clinical Practice. Edited by Kaminski H. Boston: Butterworth-Heinemann; 2002:1290–1297.

    Google Scholar 

  100. Fink JK: Hereditary spastic paraplegia. In Neurological Therapeutics, Principles and Practice. Edited by Noseworthy J, London: Martin Dunitz;. 2002:2705–2713.

    Google Scholar 

  101. Fink JK: Hereditary spastic paraplegia. In Neurogenetics. Edited by Lynch DR, Farmer JM. Philadelphia: WB Saunders; 2002:711–726.

    Google Scholar 

  102. Fink JK: Hereditary spastic paraplegia. In Neurodegnerative Disease: Neurobiology, Pathogenesis, and Treatment. Edited by Beal F, Lang A, Ludolph A. Cambridge: Cambridge University Press; 2003.

    Google Scholar 

  103. Hazan J, Lamy C, Melki J, et al.: Autosomal dominant familial spastic paraplegia is genetically heterogeneous and one locus maps to chromosome 14q. Nat Genet 1993, 5:163–167.

    Article  PubMed  CAS  Google Scholar 

  104. Paternotte C, Rudnicki D, Fizames C, et al.: Quality assessment of whole genome mapping data in the refined familial spastic paraplegia interval on chromosome 14q. Genome Res 1998, 8:1216–1227.

    PubMed  CAS  Google Scholar 

  105. Charvin D, Fonknechten N, Cifuentes-Diaz C, et al.: Mutations in SPG4 are responsible for a loss of function of spastin, an abundant neuronal protein localized to the nucleus. Am J Hum Genet 2002, 71:516.

    Google Scholar 

  106. Hazan J, Fonknechten N, Mavel D, et al.: Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nat Genet 1999, 23:296–303.

    Article  PubMed  CAS  Google Scholar 

  107. Fink JK, Wu CT, Jones SM, et al.: Autosomal dominant familial spastic paraplegia: tight linkage to chromosome 15q. Am J Hum Genet 1995, 56:188–192.

    PubMed  CAS  Google Scholar 

  108. Fink JK, Sharp G, Lange B, et al.: Autosomal dominant hereditary spastic paraparesis, type I: clinical and genetic analysis of a large North American family. Neurology 1995, 45:325–331.

    PubMed  CAS  Google Scholar 

  109. Chen S, Song C, Guo H, et al.: Distinct novel mutations affecting the same base in the NIPA1 gene cause autosomal dominant hereditary spastic paraplegia in two Chinese families. Hum Mutat 2005, 25:135–141.

    Article  PubMed  CAS  Google Scholar 

  110. Hedera P, Rainier S, Alvarado D, et al.: Novel locus for autosomal dominant hereditary spastic paraplegia on chromosome 8q. Am J Hum Genet 1999, 64:563–569.

    Article  PubMed  CAS  Google Scholar 

  111. Reid E, Dearlove AM, Osborn M, et al.: A Locus for Autosomal Dominant "Pure" Hereditary Spastic Paraplegia Maps to Chromosome 19q13. Am J Hum Genet 2000, 66:728–732.

    Article  PubMed  CAS  Google Scholar 

  112. Seri M, Cusano R, Forabosco P, et al.: Genetic mapping to 10q23.3-q24.2, in a large Italian pedigree, of a new syndrome showing bilateral cataracts, gastroesophageal reflux, and spastic paraparesis with amyotrophy. Am J Hum Genet 1999, 64:586–593.

    Article  PubMed  CAS  Google Scholar 

  113. Reid E, Dearlove AM, Rhodes M, Rubinsztein DC: A new locus for autosomal dominant ‘pure’ hereditary spastic paraplegia mapping to chromosome 12q13 and evidence for further genetic heterogeneity. Am J Hum Genet 1999, 65:757–763.

    Article  PubMed  CAS  Google Scholar 

  114. Fichera M, Lo Giudice M, Falco M, et al.: Evidence of kinesin heavy chain (KIF5A) involvement in pure hereditary spastic paraplegia. Neurology 2004, 63:1108–1110.

    PubMed  CAS  Google Scholar 

  115. Fontaine B, Davoine CS, Durr A, et al.: A new locus for autosomal dominant pure spastic paraplegia, on chromosome 2q24-q34. Am J Hum Genet 2000, 66:702–707.

    Article  PubMed  CAS  Google Scholar 

  116. Auer-Grumbach M, Schlotter-Weigel B, Lochmuller H, et al.: Phenotypes of the N88S Berardinelli-Seip congenital lipodystrophy 2 mutation. Ann Neurol 2005, 57:415–424.

    Article  PubMed  CAS  Google Scholar 

  117. Valente EM, Brancati F, Caputo V, et al.: Novel locus for autosomal dominant pure heredtiary spastic paraplegia (SPG19) maps to chromosome 9q22-q34. Ann Neurol 2002, 51:681–685.

    Article  PubMed  CAS  Google Scholar 

  118. Ashley-Koch A, Kail ME, Nance M, et al.: A new locus for autosomal dominant hereditary spastic paraplegia (SPG29) maps to chromosome 2p12. Am J Hum Genet 2005, In press.

  119. Hentati A, Pericack-Vance MA, Hung WY, et al.: Linkage of the "pure" recessive familial spastic paraplegia to chromosome 8 markers and evidence of genetic locus heterogeneity. Hum Genet 1993, 53:1013.

    Google Scholar 

  120. Muglia M, Criscuolo C, Magariello A, et al.: Narrowing of the critical region in autosomal recessive spastic paraplegia linked to the SPG5 locus. Neurogenetics 2004, 5:49–54.

    Article  PubMed  CAS  Google Scholar 

  121. Tang BS, Chen X, Zhao GH, et al.: Clinical features of hereditary spastic paraplegia with thin corpus callosum: report of 5 Chinese cases. Chin Med J (Engl) 2004, 117:1002–1005.

    Google Scholar 

  122. Garner CC, Garner A, Huber G, et al.: Molecular cloning of microtubule-associated protein 1 (MAP1A) and microtubule-associated protein 5 (MAP1B): identification of distinct genes and their differential expression in developing brain. J Neurochem 1990, 55:146–154.

    Article  PubMed  CAS  Google Scholar 

  123. Martinez-Murillo F, Kobayashi H, Pegoraro E, et al.: Genetic localization of a new locus for recessive spastic paraplegia to 15q13-15. Neurology 1999, 53:50–56.

    PubMed  CAS  Google Scholar 

  124. Winner B, Uyanik G, Gross C, et al.: Clinical progression and genetic analysis in hereditary spastic paraplegia with thin corpus callosum in spastic gait gene 11 (SPG11). Arch Neurol 2004, 61:117–121.

    Article  PubMed  Google Scholar 

  125. Vazza GZ, Boaretto F, Micaglio GF, et al.: A new locus for autosomal recessive spastic paraplegia associated with mental retardation and distal motor neuropathy SPG14, maps to chromosome 3q27-q28. Am J Hum Genet 2000, 67:504–509.

    Article  PubMed  CAS  Google Scholar 

  126. Hughes CA, Byrne PC, Webb S, et al.: SPG15, a new locus for autosomal recessive complicated HSP on chromosome 14q. Neurology 2001, 56:1230–1233.

    PubMed  CAS  Google Scholar 

  127. Patel H, Cross H, Proukakis C, et al.: SPG20 is mutated in Troyer syndrome, an hereditary spastic paraplegia. Nat Genet 2002, 31:347–348.

    PubMed  CAS  Google Scholar 

  128. Proukakis C, Cross H, Patel H, et al.: Troyer syndrome revisited. A clinical and radiological study of a complicated hereditary spastic paraplegia. J Neurol 2004, 251:1105–1110.

    Article  PubMed  Google Scholar 

  129. Simpson MA, Cross H, Proukakis C, et al.: Maspardin is mutated in Mast Syndrome, a complicated form of hereditary spastic paraplegia associated with dementia. Am J Hum Genet 2003, 73:1147–1156.

    Article  PubMed  CAS  Google Scholar 

  130. Rainier S, Bui M, Plein E, et al.: Neuropathy target esterase gene mutations cause motor neuron disease. Am J Hum Genet 2005, In press.

  131. Blumen SC, Bevan S, Abu-Mouch S, et al.: A locus for complicated hereditary spastic paraplegia maps to chromosome 1q24-q32. Ann Neurol 2004, 54:796–803.

    Article  CAS  Google Scholar 

  132. Hodgkinson CA, Bohlega S, Abu-Amero SN, et al.: A novel form of autosomal recessive pure hereditary spastic paraplegia maps to chromosome 13q14. Neurology 2002, 59:1905–1919.

    Article  PubMed  CAS  Google Scholar 

  133. Wilkinson PA, Simpson MA, Bastaki L, et al.: A new locus for autosomal recessive complicated hereditary spastic paraplegia (SPG26) maps to chromosome 12p11.1*12q14. J Med Genet 2005, 42:80–82.

    Article  PubMed  CAS  Google Scholar 

  134. Meijer IA, Cossette P, Roussel J, et al.: A novel locus for pure recessive hereditary spastic paraplegia maps to 10q22.1-10q24.1. Ann Neurol 2004, 56:579–582.

    Article  PubMed  CAS  Google Scholar 

  135. Bouslam N, Benomar A, Azzedine H, et al.: Mapping of a new form of pure autosomal recessive spastic paraplegia (SPG28). Ann Neurol 2005, 57:567–571.

    Article  PubMed  CAS  Google Scholar 

  136. Stevanin G, Paternotte C, Coutinho P, et al.: SPG29, a new locus for a pure form of autosomal recessive spastic paraplegia on chromosome 14q. Am J Hum Genet 2005, In press.

  137. Klebe S, Azzedine H, Durr A, et al.: A new locus for autosomal recessive spastic paraplegia (SPG30) on chromosome 2. Am J Hum Genet 2005, In press.

  138. Macedo-Souza LI, Kok F, Santos S, et al.: Spastic paraplegia, optic atrophy, and neuropathy is linked to chromosome 11q13. Ann Neurol 2005, 57:730–737.

    Article  PubMed  CAS  Google Scholar 

  139. Jouet M, Rosenthal A, Armstrong G, et al.: X-linked spastic paraplegia (SPG1), MASA syndrome and X-linked hydrocephalus result from mutations in the L1 gene. Nat Genet 1994, 7:402–407.

    Article  PubMed  CAS  Google Scholar 

  140. Kobayashi H, Hoffman EP, Marks HG: The rumpshaker mutation in spastic paraplegia. Nat Genet 1994, 7:351–352.

    Article  PubMed  CAS  Google Scholar 

  141. Saugier-Veber P, Munnich A, Bonneau D, et al.: X-linked spastic paraplegia and Pelizaeus-Merzbacher disease are allelic disorders at the proteolipid protein locus. Nat Genet 1994, 6:257–262.

    Article  PubMed  CAS  Google Scholar 

  142. Cambi F, Tang XM, Cordray P, et al.: Refined genetic mapping and proteolipid protein mutation analysis in X-linked pure hereditary spastic paraplegia. Neurology 1996, 46:1112–1127.

    PubMed  CAS  Google Scholar 

  143. Steinmuller R, Lantingua-Cruz A, Carcia-Garcia R, et al.: Evidence of a third locus in X-linked recessive spastic paraplegia [letter]. Hum Genet 1997, 100:287–289.

    Article  PubMed  CAS  Google Scholar 

  144. Tamagaki A, Shima M, Tomita R, et al.: Segregation of a pure form of spastic paraplegia and NOR insertion into Xq11.2. Am J Med Genet 2000, 94:5–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John K. Fink MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fink, J.K. Hereditary spastic paraplegia. Curr Neurol Neurosci Rep 6, 65–76 (2006). https://doi.org/10.1007/s11910-996-0011-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-996-0011-1

Keywords

Navigation