Skip to main content

Advertisement

Log in

Head and neck cancer immunotherapy: Clinical evaluation

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Overall survival for patients with squamous cell carcinoma of the head and neck (SCCHN) has not improved appreciably over the past few decades. Because standard treatments have not controlled this disease with sufficiently high success rates, novel therapeutic approaches, such as immunotherapy, are under investigation. Cancer immunotherapy involves various techniques used to expand and activate the immune system to control tumor growth in vivo; to date, clinical evaluation has demonstrated low toxicity. An emerging form of SCCHN immunotherapy involves the use of antibodies that target growth factor receptors (where immune activation appears to enhance tumor lysis), resulting in improved clinical outcome. So far, immunotherapy appears to have the most applicability after other therapeutic interventions; however, its vast potential clinical value has yet to be fully explored. This article reviews immunotherapeutic strategies currently in clinical trials or under development for patients with SCCHN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Cresswell P, Ackerman AL, Giodini A, et al.: Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol Rev 2005, 207:145–157.

    Article  PubMed  CAS  Google Scholar 

  2. Ferris RL, Whiteside TL, Ferrone S: Immune escape associated with functional defects in antigen-processing machinery in head and neck cancer. Clin Cancer Res 2006, 12:3890–3895.

    Article  PubMed  CAS  Google Scholar 

  3. Ferris RL, Hunt JL, Ferrone S: Human leukocyte antigen (HLA) class I defects in head and neck cancer: molecular mechanisms and clinical significance. Immunol Res 2005, 33:113–133.

    Article  PubMed  CAS  Google Scholar 

  4. Hoffmann TK, Bier H, Whiteside TL: Targeting the immune system: novel therapeutic approaches in squamous cell carcinoma of the head and neck. Cancer Immunol Immunother 2004, 53:1055–1067.

    Article  PubMed  Google Scholar 

  5. Meissner M, Reichert TE, Kunkel M, et al.: Defects in the human leukocyte antigen class I antigen processing machinery in head and neck squamous cell carcinoma: association with clinical outcome. Clin Cancer Res 2005, 11:2552–2560.

    Article  PubMed  CAS  Google Scholar 

  6. Dominiecki ME, Beatty GL, Pan ZK, et al.: Tumor sensitivity to IFN-gamma is required for successful antigen-specific immunotherapy of a transplantable mouse tumor model for HPV-transformed tumors. Cancer Immunol Immunother 2005, 54:477–488.

    Article  PubMed  CAS  Google Scholar 

  7. Lopez-Albaitero A, Nayak JV, Ogino T, et al.: Role of antigen-processing machinery in the in vitro resistance of squamous cell carcinoma of the head and neck cells to recognition by CTL. J Immunol 2006, 176:3402–3409.

    PubMed  CAS  Google Scholar 

  8. Strauss L, Bergmann C, Szczepanski M, et al.: A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Clin Cancer Res 2007, 13:4345–4354.

    Article  PubMed  CAS  Google Scholar 

  9. Kuss I, Hathaway B, Ferris RL, et al.: Decreased absolute counts of T lymphocyte subsets and their relation to disease in squamous cell carcinoma of the head and neck. Clin Cancer Res 2004, 10:3755–3762.

    Article  PubMed  CAS  Google Scholar 

  10. Kim JW, Ferris RL, Whiteside TL: Chemokine C receptor 7 expression and protection of circulating CD8+ T lymphocytes from apoptosis. Clin Cancer Res 2005, 11:7901–7910.

    Article  PubMed  CAS  Google Scholar 

  11. Brinkman JA, Fausch SC, Weber JS, et al.: Peptide-based vaccines for cancer immunotherapy. Expert Opin Biol Ther 2004, 4:181–198.

    Article  PubMed  CAS  Google Scholar 

  12. Theobald M, Biggs J, Dittmer D, et al.: Targeting p53 as a general tumor antigen. Proc Natl Acad Sci U S A 1995, 92:11993–11997.

    Article  PubMed  CAS  Google Scholar 

  13. DeLeo AB: p53-based immunotherapy of cancer. Crit Rev Immunol 1998, 18:29–35.

    PubMed  CAS  Google Scholar 

  14. Chikamatsu K, Nakano K, Storkus WJ, et al.: Generation of anti-p53 cytotoxic T lymphocytes from human peripheral blood using autologous dendritic cells. Clin Cancer Res 1999, 5:1281–1288.

    PubMed  CAS  Google Scholar 

  15. Petersen TR, Buus S, Brunak S, et al.: Identification and design of p53-derived HLA-A2-binding peptides with increased CTL immunogenicity. Scand J Immunol 2001, 53:357–364.

    Article  PubMed  CAS  Google Scholar 

  16. Sirianni N, Ha PK, Oelke M, et al.: Effect of human papillomavirus-16 infection on CD8+ T-cell recognition of a wild-type sequence p53264–272 peptide in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 2004, 10:6929–6937.

    Article  PubMed  CAS  Google Scholar 

  17. Thomas AK, Maus MV, Shalaby WS, et al.: A cell-based artificial antigen-presenting cell coated with anti-CD3 and CD28 antibodies enables rapid expansion and long-term growth of CD4 T lymphocytes. Clin Immunol 2002, 105:259–272.

    Article  PubMed  CAS  Google Scholar 

  18. Cohen EP: Cancer therapy with DNA-based vaccines. Immunol Lett 2000, 74:59–65.

    Article  PubMed  CAS  Google Scholar 

  19. Artusio E, Hathaway B, Stanson J, et al.: Transfection of human monocyte-derived dendritic cells with native tumor DNA induces antigen-specific T-cell responses in vitro. Cancer Biol Ther 2006, 5:1624–1631.

    PubMed  CAS  Google Scholar 

  20. Devaraj K, Gillison ML, Wu TC: Development of HPV vaccines for HPV-associated head and neck squamous cell carcinoma. Crit Rev Oral Biol Med 2003, 14:345–362.

    Article  PubMed  Google Scholar 

  21. Kim JW, Hung CF, Juang J, et al.: Comparison of HPV DNA vaccines employing intracellular targeting strategies. Gene Ther 2004, 11:1011–1018.

    Article  PubMed  CAS  Google Scholar 

  22. Hemmi H, Takeuchi O, Kawai T, et al.: A Toll-like receptor recognizes bacterial DNA. Nature 2000, 408:740–745.

    Article  PubMed  CAS  Google Scholar 

  23. O’Malley BW, Jr, Li D, McQuone SJ, et al.: Combination nonviral interleukin-2 gene immunotherapy for head and neck cancer: from bench top to bedside. Laryngoscope 2005, 115:391–404.

    Article  PubMed  CAS  Google Scholar 

  24. Li D, Jiang W, Bishop JS, et al.: Combination surgery and nonviral interleukin 2 gene therapy for head and neck cancer. Clin Cancer Res 1999, 5:1551–1556.

    PubMed  CAS  Google Scholar 

  25. Hadden JW, Verastegui EL, Hadden E: IRX-2 and thymosin alpha 1 (Zadaxin) increase T lymphocytes in T lymphocytopenic mice and humans. Ann N Y Acad Sci 2007, 1112:245–255.

    Article  PubMed  CAS  Google Scholar 

  26. De Stefani A, Forni G, Ragona R, et al.: Improved survival with perilymphatic interleukin 2 in patients with resectable squamous cell carcinoma of the oral cavity and oropharynx. Cancer 2002, 95:90–97.

    Article  PubMed  Google Scholar 

  27. Richtsmeier WJ, Koch WM, McGuire WP, et al.: Phase I–II study of advanced head and neck squamous cell carcinoma patients treated with recombinant human interferon gamma. Arch Otolaryngol Head Neck Surg 1990, 116:1271–1277.

    PubMed  CAS  Google Scholar 

  28. Karcher J, Dyckhoff G, Beckhove P, et al.: Antitumor vaccination in patients with head and neck squamous cell carcinomas with autologous virus-modified tumor cells. Cancer Res 2004, 64:8057–8061.

    Article  PubMed  CAS  Google Scholar 

  29. Schirrmacher V, Haas C, Bonifer R, et al.: Human tumor cell modification by virus infection: an efficient and safe way to produce cancer vaccine with pleiotropic immune stimulatory properties when using Newcastle disease virus. Gene Ther 1999, 6:63–73.

    Article  PubMed  CAS  Google Scholar 

  30. Termeer CC, Schirrmacher V, Brocker EB, et al.: Newcastle disease virus infection induces B7-1/B7-2-independent T-cell costimulatory activity in human melanoma cells. Cancer Gene Ther 2000, 7:316–323.

    Article  PubMed  CAS  Google Scholar 

  31. Dasgupta S, Tripathi PK, Bhattacharya-Chatterjee M, et al.: Recombinant vaccinia virus expressing IL-2 generates effective anti-tumor responses in an orthotopic murine model of head and neck carcinoma. Mol Ther 2003, 8:238–248.

    Article  PubMed  CAS  Google Scholar 

  32. Curiel TJ, Wei S, Dong H, et al.: Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 2003, 9:562–567.

    Article  PubMed  CAS  Google Scholar 

  33. Strome SE, Dong H, Tamura H, et al.: B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res 2003, 63:6501–6505.

    PubMed  CAS  Google Scholar 

  34. Modjtahedi H, Moscatello DK, Box G, et al.: Targeting of cells expressing wild-type EGFR and type-III mutant EGFR (EGFRvIII) by anti-EGFR MAb ICR62: a two-pronged attack for tumour therapy. Int J Cancer 2003, 105:273–280.

    Article  PubMed  CAS  Google Scholar 

  35. Bonner JA, Harari PM, Giralt J, et al.: Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 2006, 354:567–578.

    Article  PubMed  CAS  Google Scholar 

  36. Zhang W, Gordon M, Schultheis AM, et al.: FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab. J Clin Oncol 2007, 25:3712–3718.

    Article  PubMed  CAS  Google Scholar 

  37. Gabrilovich DI, Ishida T, Nadaf S, et al.: Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res 1999, 5:2963–2970.

    PubMed  CAS  Google Scholar 

  38. Leach DR, Krummel MF, Allison JP: Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996, 271:1734–1736.

    Article  PubMed  CAS  Google Scholar 

  39. Ribas A, Camacho LH, Lopez-Berestein G, et al.: Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J Clin Oncol 2005, 23:8968–8977.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Ferris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leibowitz, M.S., Nayak, J.V. & Ferris, R.L. Head and neck cancer immunotherapy: Clinical evaluation. Curr Oncol Rep 10, 162–169 (2008). https://doi.org/10.1007/s11912-008-0025-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-008-0025-8

Keywords

Navigation