Skip to main content
Log in

Imaging osteoarthritis: Magnetic resonance imaging versus x-ray

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Until recently, imaging evaluation of osteoarthritis has relied primarily on conventional radiography. Using radiography in clinical practice or clinical research, however, has been fraught with difficulty. Techniques for reproducibly acquiring serial radiographs of joints have improved considerably over the past several years. However, the greatest promise for advancing knowledge about osteoarthritis and its treatment lies in MRI and its unique ability to examine the joint as a whole organ. In contrast to conventional radiography, MRI can directly visualize the articular cartilage, synovium, menisci, and other intra-articular structures important to the functional integrity of joints. There have been considerable advances in MRI of articular cartilage in particular over the past several years. However, much of this has come from small cross-sectional studies. Larger, longitudinal studies are ongoing, and publications are just emerging. This paper reviews the current status of x-ray and MRI in osteoarthritis and points to where changes might be anticipated in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Peterfy CG: The role of MR imaging in clinical research studies. Semin Musculoskeletal Radiol 2001, 5:365–378.

    Article  CAS  Google Scholar 

  2. Gale DR, Chaisson CE, Totterman SM, et al.: Meniscal subluxation: association with osteoarthritis and joint space narrowing. Osteoarthritis Cartilage 1999, 7:526–532.

    Article  PubMed  CAS  Google Scholar 

  3. Breitenseher MJ, Trattnig S, Dobrocky I, et al.: MR imaging of meniscal subluxation in the knee. Acta Radiol 1997, 38:876–879.

    Article  PubMed  CAS  Google Scholar 

  4. Messner K, Fahlgren A, Persliden J, Andersson BM: Radiographic joint space narrowing and histologic changes in a rabbit meniscectomy model of early knee osteoarthrosis. Am J Sports Med 2001, 29:151–160.

    PubMed  CAS  Google Scholar 

  5. Amin S, LaValley MP, Guermazi A, et al.: The relationship between cartilage loss on magnetic resonance imaging and radiographic progression in men and women with knee osteoarthritis. Arthritis Rheum 2005, 52:3152–3159.

    Article  PubMed  Google Scholar 

  6. Buckland-Wright JC, Macfarlane DG, Jasani MK, Lynch JA: Quantitative microfocal radiographic assessment of osteoarthritis of the knee from weight bearing tunnel and semifiexed standing views. J Rheum 1994, 21:1734–1741.

    PubMed  CAS  Google Scholar 

  7. Mazzuca S, Brandt K, Buckland-Wright J, et al.: Field test of the reproducibility of automated measurements of medial tibiofemoral joint space width derived from standardized knee radiographs. J Rheumatol 1999, 26:1359–1365.

    PubMed  CAS  Google Scholar 

  8. Buckland-Wright J, Wolfe F, Ward R, et al.: Substantial superiority of semifiexed (MTP) views in knee osteoarthritis: a comparative radiographic study, without fluoroscopy, of standing extended, semifiexed (MTP), and schuss views. J Rheumatol 1999, 26:2664–2674.

    PubMed  CAS  Google Scholar 

  9. Mazzuca SA, Brandt KD, Buckwalter KA, et al.: Field test of the reproducibility of the metatarsophalangeal view with repeated radiographic examinations of subjects with osteoarthritis of the knee. Arthritis Rheum 2002, 46:109–113.

    Article  PubMed  Google Scholar 

  10. Peterfy C, Li J, Duryea J, et al.: Nonfluoroscopic method for.exed radiography of the knee that allows reproducible joint-space width measurement. Arthritis Rheum 1998, 41:S361.

    Article  Google Scholar 

  11. Brandt KD, Mazzuca SA, Katz BP, et al.: Effects of doxycycline on progression of osteoarthritis: results of a randomized, placebo-controlled, double-blind trial. Arthritis Rheum 2005 Jul, 52:1956–1959.

    Article  CAS  Google Scholar 

  12. Mazzuca SA, Brandt KD, Katz BP, et al.: Comparison of quantitative and semi-quantitative indicators of joint space narrowing in subjects with knee osteoarthritis. Ann Rheum Dis 2006, 65:64–68.

    Article  PubMed  CAS  Google Scholar 

  13. LaValley MP, McLaughlin S, Goggins J, et al.: The lateral view radiograph for assessment of the tibiofemoral joint space in knee osteoarthrits: its reliability, sensitivity to change, and longitudinal validity. Arthritis Rheum 2005, 52:35427. This paper compares and contrasts lateral and PA projections for JSN. If further studies suggest that the lateral view is more accurate and precise, there will be major implications for clinical research studies on osteoarthritis, as well as Food and Drug Administrations guidances.

    Article  Google Scholar 

  14. Cicuttini FM, Wang YY, Forbes A, et al.: Comparison between patella cartilage volume and radiological assessment of the patellofemoral joint. Clin Exp Rheumatol 2003, 21:321–326.

    PubMed  CAS  Google Scholar 

  15. Sharma L, Song J, Felson DT, et al.: The role of knee alignment in disease progression and functional decline in knee osteoarthritis. JAMA 2001, 286:188–195. Limb alignment is increasingly becoming recognized as an important variable in predicting the risk for osteoarthritis incidence.

    Article  PubMed  CAS  Google Scholar 

  16. Chang A, Hayes K, Dunlop D, et al.: Thrust during ambulation and the progression f knee osteoarthritis. Arthritis Rheum 2004, 50:3897–3903.

    Article  PubMed  Google Scholar 

  17. Conrozier T, Lequesne M, Favret H, et al.: Measurement of the radiological hip joint space width. An evaluation of various methods of measurement. Osteoarthritis Cartilage 2001, 9:281–286.

    Article  PubMed  CAS  Google Scholar 

  18. Gordon C, Wu C, Peterfy C, et al.: Automated measurement of radiographic hip joint-space width. Med Phys 2001, 28:267–277.

    Article  PubMed  CAS  Google Scholar 

  19. Peterfy C, Guermazi A, Zaim S, et al.: Whole organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 2004, 12:177–190.

    Article  PubMed  CAS  Google Scholar 

  20. Nishii T, Sugano N, Tanaka H, et al.: Articular cartilage abnormalities in dysplastic hips without joint space narrowing. Clin Orthop 2001, 383:183–190.

    Article  PubMed  Google Scholar 

  21. Peterfy C, Genant H, Mow V, Bigliani L: Evaluating arthritic changes in the shoulder with MRI. In Shoulder Magnetic Resonance Imaging. Edited by Steinbach L, Tirman P,Peterfy C, et al. Philadelphia: Lippencott-Raven; 1998:221–237.

    Google Scholar 

  22. Robson M, Hodgson R, Herrod N, et al.: A combined analysis and magnetic resonance imaging technique for computerised automatic measurement of cartilage thickness in the distal interphalangeal joint. Magn Reson Imaging 1995, 13:709–718.

    Article  PubMed  CAS  Google Scholar 

  23. Fujiwara A, Tamai K, An HS, et al.: Orientation and osteoarthritis of the lumbar facet joint. Clin Orthop 2001, 385:88–94.

    Article  PubMed  Google Scholar 

  24. Bertram S, Rudisch A, Innerhofer K, et al.: Diagnosing TMJ internal derangement and osteoarthritis with magnetic resonance imaging. J Am Dent Assoc 2001, 132:753–761.

    PubMed  CAS  Google Scholar 

  25. Recht MP, Pirraino DW, Paletta GA, et al.: Accuracy of fat-suppressed three-dimensionl spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology 1996, 198:209–212.

    PubMed  CAS  Google Scholar 

  26. Disler D: Fat-suppressed three-dimensional spoiled gradient-recalled MR imaging: assessment of articular and physeal hyaline cartilage. AJR 1997, 169:1117–1123.

    PubMed  CAS  Google Scholar 

  27. Bredella M, Tirman P, Peterfy C, et al.: Accuracy of T2- weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. Am J Roentgenol 1999, 172:1073–1080.

    CAS  Google Scholar 

  28. Nishii T, Nakanishi K, Sugano N, et al.: Articular cartilage evaluation in osteoarthritis of the hip with MR imaging under continuous leg traction. Magn Reson Imaging 1998, 16:871–875.

    Article  PubMed  CAS  Google Scholar 

  29. Hodler J, Trudell D, Pathria MN, Resnick D: Width of the articular cartilage of the hip: quantification by using fat-suppression spin-echo MR imaging in cadavers. AJR 1992, 159:351–355.

    PubMed  CAS  Google Scholar 

  30. Disler DG, McCauley TR, Kelman CG, et al.: Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. AJR 1996, 167:127–132.

    PubMed  CAS  Google Scholar 

  31. Peterfy CG, White D, Tirman P, et al.: Whole-organ evaluation of the knee in osteoarthritis using MRI. European League Against Rheumatism, Glasgow, Scotland, 1999.

  32. Peterfy CG, van Dijke CF, Janzen DL, et al.: Quantification of articular cartilage in the knee by pulsed saturation transfer and fat-suppressed MRI: optimization and validation. Radiology 1994, 192:485–491.

    PubMed  CAS  Google Scholar 

  33. Pilch L, Stewart C, Gordon D, et al.: Assessment of cartilage volume in the femorotibial joint with magnetic resonance imaging and 3D computer reconstruction. J Rheum 1994, 21:2307–2321.

    PubMed  CAS  Google Scholar 

  34. Eckstein F, Sitteck H, Gavazzenia A, et al.: Assessment of articular cartilage volume and thickness with magnetic resonance imaging (MRI). Trans Orthop Res Soc 1995, 20:194.

    Google Scholar 

  35. Eckstein F, Winzheimer M, Hohe J, et al.: Interindividual variability and correlation among morphological parameters of knee joint cartilage plates: analysis with three-dimensional MR imaging. Osteoarthritis Cartilage 2001, 9:101–111.

    Article  PubMed  CAS  Google Scholar 

  36. Cicuttini F, Forbes A, Asbeutah A, et al.: Comparison and reproducibility of fast and conventional spoiled gradient-echo magnetic resonance sequences in the determination of knee cartilage volume. J Orthop Res 2000, 18:580–584.

    Article  PubMed  CAS  Google Scholar 

  37. Glaser C, Faber S, Eckstein F, et al.: Optimization and validation of a rapid high-resolution T1-w 3D FLASH water excitation MRI sequence for the quantitative assessment of articular cartilage volume and thickness. Magn Reson Imaging 2001, 19:177–185.

    Article  PubMed  CAS  Google Scholar 

  38. Cohen ZA, McCarthy DM, Kwak SD, et al.: Knee cartilage topography, thickness, and contact areas from MRI: in- vitro calibration and in-vivo measurements. Osteoarthritis Cartilage 1999, 7:95–109.

    Article  PubMed  CAS  Google Scholar 

  39. Hardy PA, Newmark R, Liu YM, et al.: The influence of the resolution and contrast on measuring the articular cartilage volume in magnetic resonance images. Magn Reson Imaging 2000, 18:965–972.

    Article  Google Scholar 

  40. Hargreaves BA, Gold GE, Beaulieu CF, et al.: Comparison of new sequences for high-resolution cartilage imaging. Magn Reson Med 2003, 49:700–709.

    Article  PubMed  Google Scholar 

  41. Kornaat PR, Reeder SB, Koo S, et al.: MR imaging of articular cartilage at 1.5T and 3.0T: comparison of SPGR and SSFP sequences. Osteoarthritis Cartilage 2005, 13:338–344.

    Article  PubMed  CAS  Google Scholar 

  42. Eckstein F, Charles HC, Buck RJ, et al.: Accuracy and precision of quantitative assessment of cartilage morphology by magnetic resonance imaging at 3.0T. Arthritis Rheum 2005, 52:3132–3136.

    Article  PubMed  Google Scholar 

  43. Masi JN, Sell CA, Phan C, et al.: Cartilage MR imaging at 3.0 versus that at 1.5 T: preliminary results in a porcine model. Radiology 2005, 236:140–150.

    Article  PubMed  Google Scholar 

  44. Boegård TL, Rudling O, Petersson IF, Jonsson K: Magnetic resonance imaging of the knee in chronic knee pain. A 2-year follow-up. Osteoarthritis Cartilage 2001, 9:473–480.

    Article  PubMed  Google Scholar 

  45. Eckstein F, Cicuttini F, Raynauld JP, et al.: Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osetoarthrits Cartilage, In press.

  46. Dardizinski B, Mosher T, Li S, et al.: Spatial variation of T2 in human articular cartilage. Radiology 1997, 205:546–550.

    Google Scholar 

  47. Mosher T, Dardzinski B, Smith M: Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2-preliminary findings at 3 T. Radiology 2000, 241:259–266.

    Google Scholar 

  48. Xia Y, Moody JB, Burton-Wurster N, Lust G: Quantitative in situ correlation between microscopic MRI and polerized light microscopy studies of artcular cartilage. Osteoarthritis Cartilage 2001, 9:393–406.

    Article  PubMed  CAS  Google Scholar 

  49. Zaim S, Peterfy CG, Lynch JA, et al.: Early cartilage degeneration of the knee after meniscal surgery: MRI.ndings. Osteoarthritis Cartilage 2001, 9:S37.

    Google Scholar 

  50. Roos EM, Dahlberg L: Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized, controlled trial in patients at risk of osteoarthritis. Arthritis Rheum 2005, 52:3507–3514. This paper and others like it represent the result of active studies using dGEMRIC and has advanced the usage of this technique from the lab to clinical studies.

    Article  PubMed  CAS  Google Scholar 

  51. Lattanzio PJ, Marshall KW, Damyanovich AZ, Peemoeller H: Characterization of proteoglycan depletion in articular cartilage using two-dimensional time domain nuclear magnetic resonance. Magn Reson Med 2005, 54:1397–1402.

    Article  PubMed  CAS  Google Scholar 

  52. Li X, Han ET, Ma CB, et al.: In vivo 3T spiral imaging based multi-slice T(1rho) mapping of knee cartilage in osteoarthritis. Magn Reson Med 2005, 54:929–936. This paper represents a new non-invasive technique that holds potential in the compositional evaluation of cartilage for the assessment of osteoarthritis.

    Article  PubMed  Google Scholar 

  53. Kim DK, Ceckler TL, Hascall VC, et al.: Analysis of water-macromolecule proton magnetization transfer in articular cartilage. Magn Reson Med 1993, 29:211–215.

    Article  PubMed  CAS  Google Scholar 

  54. Hohe J, Faber S, Stammberger T, et al.: A technique for 3D in vivo quantification of proton density and magnetization transfer coefficients of knee joint cartilage. Osteoarthritis Cartilage 2000, 8:426–433.

    Article  PubMed  CAS  Google Scholar 

  55. Burstein D, Gray ML, Hartman AL, et al.: Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging. J Orthop Res 1993, 11:465–478.

    Article  PubMed  CAS  Google Scholar 

  56. Xia Y, Farquhar T, Burton-Wuster N, et al.: Dfflusion and relaxation mapping of cartilage-bone plugs and excised disks using microscopic magnetic resonance imaging. Magn Reson Med 1994, 31:273–282.

    Article  PubMed  CAS  Google Scholar 

  57. Bashir A, Gray ML, Burstein D: Gd-DTPA as a measure of cartilage degradation. Magn Reson Med 1996, 36:665–673.

    Article  PubMed  CAS  Google Scholar 

  58. Bashir A, Gray ML, Hartke J, Burstein D: Nondistructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med 1999, 41:857–865.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kothari PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peterfy, C., Kothari, M. Imaging osteoarthritis: Magnetic resonance imaging versus x-ray. Curr Rheumatol Rep 8, 16–21 (2006). https://doi.org/10.1007/s11926-006-0020-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-006-0020-8

Keywords

Navigation