Skip to main content
Log in

Nitric oxide synthases and osteoarthritis

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

The production of nitric oxide (NO) by chondrocytes is increased in human osteoarthritis. The excessive production of NO inhibits matrix synthesis and promotes its degradation. Furthermore, by reacting with oxidants such as superoxide anion, NO promotes cellular injury and renders the chondrocyte susceptible to cytokine-induced apoptosis. Thus, NO produced by activated chondrocytes in diseased cartilage may modulate disease progression in osteoarthritis and should therefore be considered a potential target for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Pelletier JP, Martel-Pelletier J, Abramson SB: Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets. Arthritis Rheum 2001, 44:1237–1247.

    Article  PubMed  CAS  Google Scholar 

  2. Korhonen R, Lahti A, Kankaanranta H, Moilanen E: Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy 2005, 4:471–479.

    Article  PubMed  CAS  Google Scholar 

  3. Henrotin Y, Kurz B, Aigner T: Oxygen and reactive oxygen species in cartilage degradation: friends or foes? Osteoarthritis Cartilage 2005, 13:643–654.

    Article  PubMed  CAS  Google Scholar 

  4. Hess DT, Matsumoto A, Kim SO, et al.: Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 2005, 6:150–166.

    Article  PubMed  CAS  Google Scholar 

  5. Kleinert H, Schwarz PM, Forstermann U: Regulation of the expression of inducible nitric oxide synthase. Biol Chem 2003, 384:1343–1364.

    Article  PubMed  CAS  Google Scholar 

  6. Kleinert H, Pautz A, Linker K, Schwarz PM: Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol 2004, 500:255–266.

    Article  PubMed  CAS  Google Scholar 

  7. Teixeira CC, Ischiropoulos H, Leboy PS, et al.: Nitric oxidenitric oxide synthase regulates key maturational events during chondrocyte terminal differentiation. Bone 2005, 37:37–45.

    Article  PubMed  CAS  Google Scholar 

  8. Amin AR, Di Cesare PE, Vyas P, et al.: The expression and regulation of nitric oxide synthase in human osteoarthritis-affected chondrocytes: evidence for up-regulated neuronal nitric oxide synthase. J Exp Med 1995, 182:2097–2102.

    Article  PubMed  CAS  Google Scholar 

  9. Loeser RF, Carlson CS, Del Carlo M, Cole A: Detection of nitrotyrosine in aging and osteoarthritic cartilage: Correlation of oxidative damage with the presence of interleukin-1beta and with chondrocyte resistance to insulin-like growth factor 1. Arthritis Rheum 2002, 46:2349–2357.

    Article  PubMed  CAS  Google Scholar 

  10. van der Harst M, Bull S, Brama PA, et al.: Nitrite and nitrotyrosine concentrations in articular cartilage, subchondral bone, and trabecular bone of normal juvenile, normal adult, and osteoarthritic adult equine metacarpophalangeal joints. J Rheumatol 2006, 33:1662–1667.

    PubMed  Google Scholar 

  11. Melchiorri C, Meliconi R, Frizziero L, et al.: Enhanced and coordinated in vivo expression of inflammatory cytokines and nitric oxide synthase by chondrocytes from patients with osteoarthritis. Arthritis Rheum 1998, 41:2165–2174.

    Article  PubMed  CAS  Google Scholar 

  12. Fernandes JC, Martel-Pelletier J, Pelletier JP: The role of cytokines in osteoarthritis pathophysiology. Biorheology 2002, 39:237–246.

    PubMed  CAS  Google Scholar 

  13. Koopman WJ, Moreland LW: Arthritis and allied conditions: a textbook of rheumatology, edn 15. Philadelphia: Lippincott Williams & Wilkins; 2005.

    Google Scholar 

  14. Fioravanti A, Cantarini L, Chellini F, et al.: Effect of hyaluronic acid (MW 500–730 kDa) on proteoglycan and nitric oxide production in human osteoarthritic chondrocyte cultures exposed to hydrostatic pressure. Osteoarthritis Cartilage 2005, 13:686–696. [Published erratum appears in Osteoarthritis Cartilage 2006, 14:504–505.]

    Article  Google Scholar 

  15. Sasaki K, Hattori T, Fujisawa T, et al.: Nitric oxide mediates interleukin-1-induced gene expression of matrix metalloproteinases and basic fibroblast growth factor in cultured rabbit articular chondrocytes. J Biochem (Tokyo) 1998, 123:431–439.

    CAS  Google Scholar 

  16. Manacu CA, Martel-Pelletier J, Roy-Beaudry M, et al.: Endothelin-1 in osteoarthritic chondrocytes triggers nitric oxide production and upregulates collagenase production. Arthritis Res Ther 2005, 7:R324–332.

    Article  PubMed  CAS  Google Scholar 

  17. Khatib AM, Siegfried G, Messai H, et al.: Mechanism of inhibition of endothelin-1-stimulated proteoglycan and collagen synthesis in rat articular chondrocytes. Cytokine 2002, 17:254–261.

    Article  PubMed  CAS  Google Scholar 

  18. Carlsen H, Alexander G, Austenaa LM, et al.: Molecular imaging of the transcription factor NF-kappaB, a primary regulator of stress response. Mutat Res 2004, 551:199–211.

    PubMed  CAS  Google Scholar 

  19. Bouwmeester T, Bauch A, Ruffner H, et al.: A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 2004, 6:97–105. [Published erratum appears in Nat Cell Biol 2004, 6:465.]

    Article  PubMed  CAS  Google Scholar 

  20. Clancy RM, Gomez PF, Abramson SB: Nitric oxide sustains nuclear factor kappa B activation in cytokine-stimulated chondrocytes. Osteoarthritis Cartilage 2004, 12:552–558.

    Article  PubMed  CAS  Google Scholar 

  21. Maneiro E, Lopez-Armada MJ, de Andres MC: Effect of nitric oxide on mitochondrial respiratory activity of human articular chondrocytes. Ann Rheum Dis 2005, 64:388–395.

    Article  PubMed  CAS  Google Scholar 

  22. Kuhn K, Shikhman AR, Lotz M: Role of nitric oxide, reactive oxygen species, and p38 MAP kinase in the regulation of human chondrocyte apoptosis. J Cell Physiol 2003, 197:379–387.

    Article  PubMed  Google Scholar 

  23. Del Carlo M Jr, Loeser RF: Nitric oxide-mediated chondrocyte cell death requires the generation of additional reactive oxygen species. Arthritis Rheum 2002, 46:394–403.

    Article  PubMed  Google Scholar 

  24. Whiteman M, Armstrong JS, Cheung NS, et al.: Peroxynitrite mediates calcium-dependent mitochondrial dysfunction and cell death via activation of calpains. FASEB J 2004, 18:1395–1397.

    PubMed  CAS  Google Scholar 

  25. Yasuhara R, Miyamoto Y, Akaike T, et al.: Interleukin-1beta induces death in chondrocyte-like ATDC5 cells through mitochondrial dysfunction and energy depletion in a reactive nitrogen and oxygen species-dependent manner. Biochem J 2005, 389:315–323.

    Article  PubMed  CAS  Google Scholar 

  26. Brandt KD: Response of joint structures to inactivity and to reloading after immobilization. Arthritis Rheum 2003, 49:267–271.

    Article  PubMed  Google Scholar 

  27. Smith RL, Carter DR, Schurman DJ: Pressure and shear differentially alter human articular chondrocyte metabolism: a review. Clin Orthop Relat Res 2004, (427 Suppl):S89–95.

    Google Scholar 

  28. Basso N, Heersche JN: Effects of hind limb unloading and reloading on nitric oxide synthase expression and apoptosis of osteocytes and chondrocytes. Bone 2006, 39:807–814.

    Article  PubMed  CAS  Google Scholar 

  29. Madhavan S, Anghelina M, Rath-Deschner B, et al.: Biomechanical signals exert sustained attenuation of proinflammatory gene induction in articular chondrocytes. Osteoarthritis Cartilage 2006, 14:1023–1032.

    Article  PubMed  CAS  Google Scholar 

  30. Fermor B, Weinberg JB, Pisetsky DS, Guilak F: The influence of oxygen tension on the induction of nitric oxide and prostaglandin E2 by mechanical stress in articular cartilage. Osteoarthritis Cartilage 2005, 13:935–941.

    Article  PubMed  Google Scholar 

  31. Regan E, Flannelly J, Bowler R, et al.: Extracellular superoxide dismutase and oxidant damage in osteoarthritis. Arthritis Rheum 2005, 52:3479–3491.

    Article  PubMed  CAS  Google Scholar 

  32. van den Berg WB, van de Loo F, Joosten LA, Arntz OJ: Animal models of arthritis in NOS2-deficient mice. Osteoarthritis Cartilage 1999, 7:413–415.

    Article  PubMed  Google Scholar 

  33. Salerno L, Sorrenti V, Di Giacomo C, et al.: Progress in the development of selective nitric oxide synthase (NOS) inhibitors. Curr Pharm Des 2002, 8:177–200.

    Article  PubMed  CAS  Google Scholar 

  34. Vallance P, Leiper J: Blocking NO synthesis: how, where and why? Nat Rev Drug Discov 2002, 1:939–950.

    Article  PubMed  CAS  Google Scholar 

  35. Vuolteenaho K, Kujala P, Moilanen T, Moilanen E: Aurothiomalate and hydroxychloro quine inhibit nitric oxide production in chondrocytes and in human osteoarthritic cartilage. Scand J Rheumatol 2005, 34:475–479.

    Article  PubMed  CAS  Google Scholar 

  36. Brandt KD, Mazzuca SA, Katz BP, et al.: Effects of doxycycline on progression of osteoarthritis: results of a randomized, placebo-controlled, double-blind trial. Arthritis Rheum 2005, 52:2015–2025.

    Article  PubMed  CAS  Google Scholar 

  37. Amin AR, Attur MG, Thakker GD, et al.: A novel mechanism of action of tetracyclines: effects on nitric oxide synthases. Proc Natl Acad Sci U S A 1996, 93:14014–14019.

    Article  PubMed  CAS  Google Scholar 

  38. Abramson SB, Attur M, Yazici Y: Prospects for disease modification in osteoarthritis. Nat Clin Pract Rheumatol 2006, 2:304–312.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven B. Abramson MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scher, J.U., Pillinger, M.H. & Abramson, S.B. Nitric oxide synthases and osteoarthritis. Curr Rheumatol Rep 9, 9–15 (2007). https://doi.org/10.1007/s11926-007-0016-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-007-0016-z

Keywords

Navigation