Skip to main content

Advertisement

Log in

Cell death in osteoarthritis

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

To date, most studies examining cell death during the development of osteoarthritis (OA) have focused on death of chondrocytes and have primarily examined advanced stages of the disease. Very good evidence suggests that chondrocyte death does occur at some point in the pathogenesis of OA and that it can be due to apoptosis, necrosis, or some combination of the two. Chondrocyte death can be induced by mechanical injury, loss of extracellular matrix, loss of growth factors, or excessive levels of reactive oxygen species. Although therapy specifically targeting cell death in human OA has not been reported, preclinical studies in animal models have provided early evidence that inhibition of caspases might slow OA-like changes in articular cartilage. Because of potential unwanted side effects from agents systemically inhibiting cell death, treatments specifically targeting cell death in OA will likely need to be delivered locally and in a manner that prevents systemic absorption. Inhibition of cell death in OA likely will not be a sole therapeutic target but rather a desired effect of interventions designed to reverse the catabolic-anabolic imbalance occurring in OA joint tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Aigner T, Kim HA, Roach HI: Apoptosis in osteoarthritis. Rheum Dis Clin North Am 2004, 30:639–653.

    Article  PubMed  Google Scholar 

  2. Kuhn K, D’Lima DD, Hashimoto S, Lotz M: Cell death in cartilage. Osteoarthritis Cartilage 2004, 12:1–16.

    Article  PubMed  CAS  Google Scholar 

  3. Aigner T, Hemmel M, Neureiter D, et al.: Apoptotic cell death is not a widespread phenomenon in normal aging and osteoarthritis human articular knee cartilage: a study of proliferation, programmed cell death (apoptosis), and viability of chondrocytes in normal and osteoarthritic human knee cartilage. Arthritis Rheum 2001, 44:1304–1312.

    Article  PubMed  CAS  Google Scholar 

  4. Roach HI, Aigner T, Kouri JB: Chondroptosis: a variant of apoptotic cell death in chondrocytes? Apoptosis 2004, 9:265–277.

    Article  PubMed  CAS  Google Scholar 

  5. Perez HE, Luna MJ, Rojas ML, Kouri JB: Chondroptosis: an immunohistochemical study of apoptosis and Golgi complex in chondrocytes from human osteoarthritic cartilage. Apoptosis 2005, 10:1105–1110.

    Article  CAS  Google Scholar 

  6. Svoboda KK: Chondrocyte-matrix attachment complexes mediate survival and differentiation. Microsc Res Tech 1998, 43:111–122.

    Article  PubMed  CAS  Google Scholar 

  7. Kim HA, Suh DI, Song YW: Relationship between chondrocyte apoptosis and matrix depletion in human articular cartilage. J Rheumatol 2001, 28:2038–2045.

    PubMed  CAS  Google Scholar 

  8. Thomas CM, Fuller CJ, Whittles CE, Sharif M: Chondrocyte death by apoptosis is associated with cartilage matrix degradation. Osteoarthritis Cartilage 2007, 15:27–34.

    Article  PubMed  CAS  Google Scholar 

  9. Loeser RF, Shanker G: Autocrine stimulation by insulin-like growth factor 1 and insulin-like growth factor 2 mediates chondrocyte survival in vitro. Arthritis Rheum 2000, 43:1552–1559.

    Article  PubMed  CAS  Google Scholar 

  10. Pulai JI, Del Carlo M Jr, Loeser RF: The alpha5beta1 integrin provides matrix survival signals for normal and osteoarthritic human articular chondrocytes in vitro. Arthritis Rheum 2002, 46:1528–1535.

    Article  PubMed  CAS  Google Scholar 

  11. Zemmyo M, Meharra EJ, Kuhn K, et al.: Accelerated, aging-dependent development of osteoarthritis in alpha1 integrin-deficient mice. Arthritis Rheum 2003, 48:2873–2880.

    Article  PubMed  CAS  Google Scholar 

  12. Park M, Yong Y, Choi SW, et al.: Constitutive RelA activation mediated by Nkx3.2 controls chondrocyte viability. Nat Cell Biol 2007, 9:287–298.

    Article  PubMed  CAS  Google Scholar 

  13. Tew SR, Kwan AP, Hann A, et al.: The reactions of articular cartilage to experimental wounding: role of apoptosis. Arthritis Rheum 2000, 43:215–225.

    Article  PubMed  CAS  Google Scholar 

  14. Chen CT, Burton-Wurster N, Borden C, et al.: Chondrocyte necrosis and apoptosis in impact damaged articular cartilage. J Orthop Res 2001, 19:703–711.

    Article  PubMed  CAS  Google Scholar 

  15. Milentijevic D, Rubel IF, Liew AS, et al.: An in vivo rabbit model for cartilage trauma: a preliminary study of the influence of impact stress magnitude on chondrocyte death and matrix damage. J Orthop Trauma 2005, 19:466–473.

    Article  PubMed  Google Scholar 

  16. Kurz B, Lemke A, Kehn M, et al.: Influence of tissue maturation and antioxidants on the apoptotic response of articular cartilage after injurious compression. Arthritis Rheum 2004, 50:123–130.

    Article  PubMed  CAS  Google Scholar 

  17. Green DM, Noble PC, Ahuero JS, Birdsall HH: Cellular events leading to chondrocyte death after cartilage impact injury. Arthritis Rheum 2006, 54:1509–1517.

    Article  PubMed  CAS  Google Scholar 

  18. Healy ZR, Lee NH, Gao X, et al.: Divergent responses of chondrocytes and endothelial cells to shear stress: cross-talk among COX-2, the phase 2 response, and apoptosis. Proc Natl Acad Sci U S A 2005, 102:14010–14015.

    Article  PubMed  CAS  Google Scholar 

  19. Ishizaki Y, Burne JF, Raff MC: Autocrine signals enable chondrocytes to survive in culture. J Cell Biol 1994, 126:1069–1077.

    Article  PubMed  CAS  Google Scholar 

  20. Del Carlo M, Loeser RF: Chondrocyte cell death mediated by reactive oxygen species-dependent activation of PKC-betaI. Am J Physiol Cell Physiol 2006, 290:C802–C811.

    Article  Google Scholar 

  21. Morita K, Miyamoto T, Fujita N, et al.: Reactive oxygen species induce chondrocyte hypertrophy in endochondral ossification. J Exp Med 2007, 204:1613–1623.

    PubMed  CAS  Google Scholar 

  22. Sharif M, Whitehouse A, Sharman P, et al.: Increased apoptosis in human osteoarthritic cartilage corresponds to reduced cell density and expression of caspase-3. Arthritis Rheum 2004, 50:507–515.

    Article  PubMed  CAS  Google Scholar 

  23. Emans PJ, Bulstra SK, Kuijer R: The effects of different decalcification protocols on TUNEL and general cartilage staining. Biotech Histochem 2005, 80:111–115.

    Article  PubMed  CAS  Google Scholar 

  24. Mistry D, Oue Y, Chambers MG, et al.: Chondrocyte death during murine osteoarthritis. Osteoarthritis Cartilage 2004, 12:131–141.

    Article  PubMed  CAS  Google Scholar 

  25. Pennock AT, Robertson CM, Emmerson BC, et al.: Role of apoptotic and matrix-degrading genes in articular cartilage and meniscus of mature and aged rabbits during development of osteoarthritis. Arthritis Rheum 2007, 56:1529–1536.

    Article  PubMed  Google Scholar 

  26. Lee SW, Lee HJ, Chung WT, et al.: TRAIL induces apoptosis of chondrocytes and influences the pathogenesis of experimentally induced rat osteoarthritis. Arthritis Rheum 2004, 50:534–542.

    Article  PubMed  CAS  Google Scholar 

  27. Jallali N, Ridha H, Thrasivoulou C, et al.: Vulnerability to ROS-induced cell death in ageing articular cartilage: the role of antioxidant enzyme activity. Osteoarthritis Cartilage 2005, 13:614–622.

    Article  PubMed  CAS  Google Scholar 

  28. Wei L, Sun XJ, Wang Z, Chen Q: CD95-induced osteoarthritic chondrocyte apoptosis and necrosis: dependency on p38 mitogen-activated protein kinase. Arthritis Res Ther 2006, 8:R37.

    Article  PubMed  Google Scholar 

  29. Polzer K, Schett G, Zwerina J: The lonely death: chondrocyte apoptosis in TNF-induced arthritis. Autoimmunity 2007, 40:333–336.

    Article  PubMed  CAS  Google Scholar 

  30. Del Carlo Jr M, Loeser RF: Increased oxidative stress with aging reduces chrondrocyte survival: Correlation with intracellular glutathione levels. Arthritis Rheum 2003, 48:3419–3430.

    Article  PubMed  Google Scholar 

  31. Lum JJ, DeBerardinis RJ, Thompson CB: Autophagy in metazoans: cell survival in the land of plenty. Nat Rev Mol Cell Biol 2005, 6:439–448.

    Article  PubMed  CAS  Google Scholar 

  32. Kouri-Flores JB, Abbud-Lozoya KA, Roja-Morales L: Kinetics of the ultrastructural changes in apoptotic chondrocytes from an osteoarthrosis rat model: a window of comparison to the cellular mechanism of apoptosis in human chondrocytes. Ultrastruct Pathol 2002, 26:33–40.

    Article  PubMed  Google Scholar 

  33. Bohensky J, Shapiro IM, Leshinsky S, et al.: HIF-1 regulation of chrondrocyte apoptosis: induction of the autophagic pathway. Autophagy 2007, 3:207–214.

    PubMed  CAS  Google Scholar 

  34. Bohensky J, Shapiro IM, Leshinsky S, et al.: PIM-2 is an independent regulator of chondrocyte survival and autophagy in the epiphyseal growth plate. J Cell Physiol 2007, 213:246–251.

    Article  PubMed  CAS  Google Scholar 

  35. Hiran TS, Moulton PJ, Hancock JT: Detection of superoxide and NADPH oxidase in porcine articular chondrocytes. Free Radic Biol Med 1997, 23:736–743.

    Article  PubMed  CAS  Google Scholar 

  36. van Lent PL, Nabbe KC, Blom AB, et al.: NADPH-oxidase-driven oxygen radical production determines chondrocyte death and partly regulates metalloproteinase-mediated cartilage matrix degradation during interferon-gamma-stimulated immune complex arthritis. Arthritis Res Ther 2005, 7:R885–R895.

    Article  PubMed  Google Scholar 

  37. D’Lima D, Hermida J, Hashimoto S, et al.: Caspase inhibitors reduce severity of cartilage lesions in experimental osteoarthritis. Arthritis Rheum 2006, 54:1814–1821.

    Article  PubMed  CAS  Google Scholar 

  38. Dang AC, Warren AP, Kim HT: Beneficial effects of intra-articular caspase inhibition therapy following osteochrondral injury. Osteoarthritis Cartilage 2006, 14:526–532.

    Article  PubMed  CAS  Google Scholar 

  39. Costouros JG, Kim HT: Preventing chondrocyte programmed cell death caused by iatrogenic injury. Knee 2007, 14:107–111.

    Article  PubMed  Google Scholar 

  40. Huser CA, Peacock M, Davies ME: Inhibition of caspase-9 reduces chondrocyte apoptosis and proteoglycan loss following mechanical trauma. Osteoarthritis Cartilage 2006, 14:1002–1010.

    Article  PubMed  CAS  Google Scholar 

  41. Grossin L, Cournil-Henrionnet C, Pinzano A, et al.: Gene transfer with HSP 70 in rat chondrocytes confers cytoprotection in vitro and during experimental osteoarthritis. FASEB J 2006, 20:65–75.

    Article  PubMed  CAS  Google Scholar 

  42. Dollings PJ, Dietrich AJ, Havran LM, et al., assignees: Pyrimidoindolones and methods for using same. US patent 7,256,198. 2007.

  43. Bebbington D, Knegtel R, Mortimore M, et al., assignees: Carbamate caspase inhibitors and uses thereof. US patent 7,074,782. 2006.

  44. Golec JM, Bebbington D, Brenchley G, et al., assignees: Caspase inhibitors and uses thereof. US patent 7,053,057. 2006.

  45. Golec JM, Lauffer DJ, Livingston DJ, et al., assignees: Inhibitors of interleukin 1-beta converting enzyme. US patent 6,974,809. 2005.

  46. Zhou T, Ichikawa K, Kimberly RP, Koopman WJ, assignees: Antibody selective for a tumor necrosis factor-related apoptosis-inducing ligand receptor and uses thereof. US patent 7,244,429. 2007.

  47. Mercep M, Mesic M, Tomaskovic L, Markovic S, assignees: Compounds, compositions as carriers for steroid/nonsteroid anti-inflammatory; antienoplastic and antiviral active molecules. US patent 7,157,433. 2007.

  48. Filvaroff EH, Okumu FW, assignees: Use of insulin for the treatment of cartilaginous disorders. US patent 7,268,112. 2007.

  49. Wei L, Sun X, Kanbe K, et al.: Chondrocyte death induced by pathological concentration of chemokine stromal cell-derived factor-1. J Rheum 2006, 33:1818–1826.

    PubMed  CAS  Google Scholar 

  50. Racz B, Reglodi D, Fodor B, et al.: Hyperosmotic stress-induced apoptotic signaling pathways in chondrocytes. Bone 2007, 40:1536–1543.

    Article  PubMed  CAS  Google Scholar 

  51. Wang G, Beier F: Rac1/Cdc42 and RhoA GTPases antagonistically regulate chondrocyte proliferation, hypertrophy, and apoptosis. J Bone Min Research 2005, 20:1022–1031.

    Article  CAS  Google Scholar 

  52. Shan Z-Z, Masuko-Hongo K, Dai S-M, et al.: A potential role of 15-deoxy-[delta]12,14-prostaglandin J2 for induction of human articular chondrocyte apoptosis in arthritis. J Biol Chem 2004, 279:37939–37950.

    Article  PubMed  CAS  Google Scholar 

  53. Yoon HS, Kim HA, Song YW: Inhibition of NF-kappaB renders human juvenile costal chondrocyte cell lines sensitive to TNF-alpha-mediated cell death. Rheumatol Int 2006, 26:201–208.

    Article  PubMed  CAS  Google Scholar 

  54. Loeser RF, Forsyth CB, Samarel AM, Im HJ: Fibronectin fragment activation of proline-rich tyrosine kinase PYK2 mediates integrin signals regulating collagenase-3 expression by human chondrocytes through a protein kinase C-dependent pathway. J Biol Chem 2003, 278:24577–24585.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard F. Loeser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Carlo, M., Loeser, R.F. Cell death in osteoarthritis. Curr Rheumatol Rep 10, 37–42 (2008). https://doi.org/10.1007/s11926-008-0007-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-008-0007-8

Keywords

Navigation