Skip to main content

Advertisement

Log in

Point: Hydroxyapatite crystal deposition is intimately involved in the pathogenesis and progression of human osteoarthritis

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

The cause of osteoarthritis (OA), the most common form of arthritis, is most likely multifactorial. No drug exists to slow the progression or reverse OA disease progression. Ample data support a key role of calcium-containing crystals, such as hydroxyapatite, in OA pathogenesis. The presence of these crystals, far higher in OA than in any other form of arthritis, correlates with the degree of radiographic degeneration. Calcium-containing crystals have potent biologic effects in vitro that emphasize their pathogenic potential. OA-associated matrix and chondrocyte alterations play an intimate role in the crystal deposition process. A major difficulty has been the lack of a simple technique for crystal identification in affected joints. Enhanced effort is needed to establish calcium-containing crystals as a therapeutic target in OA, as current data suggest an intimate association in its pathogenesis and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Brandt K, Lohmander LS, Doherty M: Pathogenesis of osteoarthritis. In Osteoarthritis. Edited by Brandt K, Doherty M, Lohmander LS. Oxford: Oxford University Press; 1998:70–74.

    Google Scholar 

  2. Molloy ES, McCarthy GM: Calcium crystal deposition disease-update in pathogenesis and manifestations. Rheum Dis Clin North Am 2006, 32:383–400.

    Article  Google Scholar 

  3. Derfus BA, Kurian JB, Butler JJ, et al.: The high prevalence of pathologic calcium crystals in pre-operative knees. J Rheumatol 2002, 29:570–574.

    PubMed  Google Scholar 

  4. Swan A, Chapman B, Heap P, et al.: Submicroscopic crystals in osteoarthritic synovial fluids. Ann Rheum Dis 1994, 53:467–470.

    Article  PubMed  CAS  Google Scholar 

  5. McCarty DJ, Halverson PB, Carrera GF, et al.: Milwaukee shoulder: association of microspheroids containing hydroxyapatite crystals, active collagenase, and neutral protease with rotator cuff defects. I. Clinical aspects. Arthritis Rheum 1981, 24:464–473.

    Article  PubMed  CAS  Google Scholar 

  6. Cheung HS: Role of calcium-containing crystals in osteoarthritis. Front Biosci 2005, 10:1336–1340.

    Article  PubMed  CAS  Google Scholar 

  7. Cheung HS: Biological effects of calcium-containing crystals. In Crystal-induced Arthropathies. Edited by Wortmann RL, Schumacher HR, Becker MA, Ryan LM. New York: Taylor & Francis Group; 2006:277–286.

    Google Scholar 

  8. Morgan MP, Whelan LC, Sallis JD, et al.: Basic calcium phosphate crystal-induced prostaglandin E2 production in human fibroblasts: role of cyclooxygenase 1, cyclooxygenase 2, and interleukin-1beta. Arthritis Rheum 2004, 50:1642–1649.

    Article  PubMed  CAS  Google Scholar 

  9. Rothenberg RJ, Cheung H: Rabbit synoviocyte inositol phospholipid metabolism is stimulated by hydroxyapatitite crystals. Am J Physiol 1988, 254:C554–C559.

    PubMed  CAS  Google Scholar 

  10. McCarthy GM, Mitchell PG, Struve JA, Cheung HS: Basic calcium phosphate crystal cause coordinate induction and secretion of collagenase and stromelysin. J Cell Physiol 1992, 153:140–146.

    Article  PubMed  CAS  Google Scholar 

  11. Bai G, Howell DS, Roos BA, et al.: Crystals upregulate metalloproteinases and downregulate tissue inhibitor of metalloproteinase in human fibroblasts. Osteoarthritis Cartilage 2001, 9:416–422.

    Article  PubMed  CAS  Google Scholar 

  12. Reuben PM, Wenger L, Cruz M, Cheung HS: Induction of metalloproteinase-8 in human fibroblasts by basic calcium phosphate crystals: effect of phosphocitrate. Connect Tissue Res 2001, 42:1–12.

    Article  PubMed  CAS  Google Scholar 

  13. McCarthy GM, Augustine JA, Baldwin AS, et al.: Molecular mechanism of basic calcium phosphate crystal-induced cell activation. Role of nuclear factor kappa B, activator protein 1 and protein kinase C. J Biol Chem 1998, 273:35161–35169.

    Article  PubMed  CAS  Google Scholar 

  14. Reuben PM, Sun Y, Cheung HS: Basic calcium phosphate crystals activate p44/42 MAPK signal transduction pathway via protein kinase Cmicro in human fibroblasts J Biol Chem 2004, 279:35719–35725.

    Article  PubMed  CAS  Google Scholar 

  15. Hamilton JA, McCarthy G, Whitty G: Inflammatory microcrystals induce macrophage survival and DNA synthesis. Arthritis Res 2001, 3:242–246.

    Article  PubMed  CAS  Google Scholar 

  16. Molloy ES, Morgan MP, Doherty GA, et al.: Mechanism of basic calcium phosphate crystal-stimulated cyclo-oxygenase-1 up-regulation in osteoarthritic synovial fibroblasts. Rheumatology (Oxford) 2008, 47:965–971.

    Article  CAS  Google Scholar 

  17. Molloy ES, Morgan MP, Doherty GA, et al.: Mechanism of basic calcium phosphate crystal-stimulated matrix metalloproteinase-13 expression by osteoarthritic synovial fibroblasts: inhibition by prostaglandin E2. Ann Rheum Dis 2008, 67:1773–1779.

    Article  PubMed  CAS  Google Scholar 

  18. Molloy ES, Morgan MP, McDonnell B, et al.: BCP crystals increase prostacyclin production and upregulate the prostacyclin receptor in OA synovial fibroblasts: potential effects on mPGES1 and MMP-13. Osteoarthritis Cartilage 2007, 15:414–420.

    Article  PubMed  CAS  Google Scholar 

  19. Molloy ES, McCarthy GM: Biochemistry of basic calcium phosphate (apatite)-associated syndromes. In Crystal-induced Arthropathies. Edited by Wortmann RL, Schumacher HR, Becker MA, Ryan LM. New York: Taylor & Francis Group; 2006:227–238.

    Google Scholar 

  20. Kirsch T: Determinants of pathological mineralization. Curr Opin Rheumatol 2006, 18:174–180.

    Article  PubMed  CAS  Google Scholar 

  21. Derfus BA, Rachow JW, Mandel NS, et al.: Articular cartilage vesicles generate calcium pyrophosphate dihydrate-like crystals in vitro. Arthritis Rheum 1992, 35:231–240.

    Article  PubMed  CAS  Google Scholar 

  22. Jubeck B, Gohr C, Fahey M, et al.: Promotion of articular cartilage matrix vesicle mineralization by type I collagen. Arthritis Rheum 2008, 58:2809–2817.

    Article  PubMed  Google Scholar 

  23. Ryan LM, Costello JC: Biochemistry of calcium pyrophosphate dihydrate deposition. In Crystal-induced Arthropathies. Edited by Wortmann RL, Schumacher HR, Becker MA, Ryan LM. New York: Taylor & Francis Group; 2006:213–225.

    Google Scholar 

  24. Ryan LM: The ank gene story. Arthritis Res 2001, 3:77–79.

    Article  PubMed  CAS  Google Scholar 

  25. Heinkel D, Gohr CM, Uzuki M, Rosenthal AK: Transglutaminase contributes to CPPD crystal formation in osteoarthritis. Front Biosci 2004, 9:3257–3261.

    Article  PubMed  CAS  Google Scholar 

  26. Rosenthal AK, Gohr CM, Uzuki M, Masuda I: Osteopontin promotes pathologic mineralization in articular cartilage. Matrix Biol 2007, 26:96–105.

    Article  PubMed  CAS  Google Scholar 

  27. Kalya S, Rosenthal AK: Extracellular matrix changes regulate calcium crystal formation in articular cartilage. Curr Opin Rheumatol 2005, 17:325–329.

    Article  PubMed  CAS  Google Scholar 

  28. Rosenthal AK, Mandel N: Identification of crystals in synovial fluids and joint tissues. Curr Rheumatol Rep 2001, 3:11–16.

    Article  PubMed  CAS  Google Scholar 

  29. Hernandez-Santana A, Yavorskyy A, Olinyole A, et al.: Isolation of calcium phosphate crystals from complex biological fluids using bisphosphonate-modified superparamagnetic beads. Chem Commun (Camb) 2008, 23:2686–2688.

    Article  Google Scholar 

  30. Rosenthal AK, Fahey M, Gohr C, et al.: Feasibility of a tetracycline-binding method for detecting synovial fluid basic calcium phosphate crystals. Arthritis Rheum 2008, 58:3270–3274.

    Article  PubMed  Google Scholar 

  31. Rosenthal AK, Mattson E, Gohr CM, Hirschmugl CJ: Characterization of articular calcium-containing crystals by synchrotron FTIR. Osteoarthritis Cartilage 2008, 16:1395–1402.

    Article  PubMed  CAS  Google Scholar 

  32. Fam AG, Morava-Protzner I, Purcell C, et al.: Acceleration of experimental lapine osteoarthritis by calcium pyrophosphate microcrystalline synovitis. Arthritis Rheum 1995, 38:201–210.

    Article  PubMed  CAS  Google Scholar 

  33. Krug HE, Mahowald ML, Halverson PB, et al.: Phosphocitrate prevents disease progression in murine progressive ankylosis. Arthritis Rheum 1993, 36:1603–1611.

    Article  PubMed  CAS  Google Scholar 

  34. Nair D, Misra RP, Sallis JD, Cheung HS: Phosphocitrate inhibits a basic calcium phosphate and calcium pyrophosphate dihydrate crystal-induced mitogen-activated protein kinase cascade signal transduction pathway. J Biol Chem 1997, 272:18920–18925.

    Article  PubMed  CAS  Google Scholar 

  35. Cheung HS, Ryan LM: Phosphocitrate blocks nitric oxide-induced calcification of cartilage and chondrocyte-derived apoptotic bodies. Osteoarthritis Cartilage 1999, 7:409–412.

    Article  PubMed  CAS  Google Scholar 

  36. Cheung HS, Sallis JD, Demadis KD, Wierzbicki A: Phosphocitrate blocks calcification-induced articular joint degeneration in a guinea pig model. Arthritis Rheum 2006, 54:2452–2461.

    Article  PubMed  CAS  Google Scholar 

  37. McCarthy GM: Inspirational calcification: how rheumatology research directs investigation in vascular biology. Curr Opin Rheumatol 2009, 21:47–49.

    Article  PubMed  Google Scholar 

  38. Swan A, Amer H, Dieppe P: The value of synovial fluid assays in the diagnosis of joint disease: a literature survey. Ann Rheum Dis 2002, 61:493–498.

    Article  PubMed  CAS  Google Scholar 

  39. Cheng P-T, Pritzker KPH: Pyrophosphate, phosphate ion interaction: effects on calcium pyrophosphate and calcium hydroxyapatite crystal formation in aqueous solutions. J Rheum 1983, 10:769–777.

    PubMed  CAS  Google Scholar 

  40. Thouverey C, Bechkoff G, Pikula S, et al.: Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dihydrate mineral deposition by matrix vesicles. Osteoarthritis Cartilage 2009, 17:64–72.

    Article  PubMed  CAS  Google Scholar 

  41. Derfus BA, Kurtin SM, Camacho NP, et al.: Comparison of matrix vesicles derived from normal and osteoarthritic human articular cartilage. Conn Tuss Res 1996, 35:337–342.

    Article  CAS  Google Scholar 

  42. Fuerst M, Lammers L, Schäfer F, et al.: Prevalence and composition of calcium crystals in advanced osteoarthritis of the knee. Arthritis Rheum 2007, 56:S576.

    Google Scholar 

  43. Nalbant S, Martinez JAM, Kitumnuaypong T, et al.: Synovial fluid features and their relations to osteoarthritis severity: new findings from sequential studies. Osteoarthritis Cartilage 2003, 11:50–54.

    Article  PubMed  CAS  Google Scholar 

  44. Muehleman C, Li J, Aigner T, et al.: Association between crystals and cartilage degeneration in the ankle. J Rheumatol 2008, 35:1108–1117.

    PubMed  CAS  Google Scholar 

  45. McCarthy GM: Crystal deposition diseases: out of sight, out of mind. Curr Opin Rheumatol 2005, 17:312–313.

    Article  PubMed  Google Scholar 

  46. Ewence AE, Bootman M, Skepper JN, et al.: Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque de-stabilization. Circ Research 2008, 103:28–34.

    Article  Google Scholar 

  47. Nadra I, Mason JC, Philippidis P, et al.: Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification? Circulation Research 2005, 96:1248–1256.

    Article  PubMed  CAS  Google Scholar 

  48. Nadra I, Boccaccini AR, Philippidis P, et al.: Effect of particle size on basic calcium phosphate crystal stimulation of macrophage TNFa release. Atherosclerosis 2008, 196:98–105.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraldine M. McCarthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCarthy, G.M., Cheung, H.S. Point: Hydroxyapatite crystal deposition is intimately involved in the pathogenesis and progression of human osteoarthritis. Curr Rheumatol Rep 11, 141–147 (2009). https://doi.org/10.1007/s11926-009-0020-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-009-0020-6

Keywords

Navigation