Skip to main content
Log in

A Review on Microbial Lipases Production

  • Review Article
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

This review paper provides an overview regarding the main aspects of microbial lipases production. The most important microbial lipase-producing strains for submerged and solid-state fermentations are reviewed as well as the main substrates, including the use of agroindustrial residues. Current process techniques (batch, repeated-batch, fed-batch, and continuous mode) are discussed and the main bioreactors configurations are also presented. Furthermore, the present review paper shows a general overview about the development of mathematical models applied to lipase production. Finally, some future perspectives on lipase production are discussed with special emphasis on lipase engineering and the use of mathematical models as a useful tool for process improvement and control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abada, E. A. E. (2008). Production and characterization of a mesophilic lipase isolated from Bacillus stearothermophilus AB-1. Pakistan Journal of Biological Sciences, 11, 1100–1106.

    Article  Google Scholar 

  • Alkan, H., Baysal, Z., Uyar, F., & Dogru, M. (2007). Production of lipase by a newly isolated Bacillus coagulans under solid-state fermentation using melon waste. Applied Biochemistry and Biotechnology, 136, 183–192. doi:10.1007/BF02686016.

    Article  CAS  Google Scholar 

  • Alonso, F. O. M., Oliveira, E. B. L., Dellamora-Ortiz, G. M., & Pereira-Meirelles, F. V. (2005). Improvement of lipase production at different stirring speeds and oxygen levels. Journal of the Brazilian Sciences of Chemical Engineering, 22(1), 9–18. doi:10.1590/S0104-66322005000100002.

    CAS  Google Scholar 

  • Amaral, P. F. F., Almeida, A. P. R., Peixoto, T., Rocha-Leão, M. H. M., Coutinho, J. A. P., & Coelho, M. A. (2007). Beneficial effects of enhanced aeration using perfluorodecalin in Yarrowia lipolytica cultures for lipase production. World Journal of Microbiology & Biotechnology, 23, 339–344. doi:10.1007/s11274-006-9229-y.

    Article  CAS  Google Scholar 

  • Azeredo, L. A. I., Gomes, P. M., Sant’Anna, G,. Jr, Castilho, L. R., & Freire, D. G. (2007). Production and regulation of lipase activity from Penicillium restrictum in submerged and solid-state fermentations. Current Microbiology, 54, 361–365. doi:10.1007/s00284-006-0425-7.

    Article  CAS  Google Scholar 

  • Bapiraju, K. V. V. S. N., Sujatha, P., Ellaiah, P., & Ramana, T. (2005). Sequential parametric optimization of lipase production by a mutant strain Rhizopus sp. BTNT-2. Brazilian Journal of Chemical Engineering, 45(4), 257–273. doi:10.1002/jobm.200410548.

    CAS  Google Scholar 

  • Becker, P., & Markl, H. (2000). Modeling of olive oil degradation and oleic acid inhibition during chemostat and batch cultivations of Baccilus thermoleovorans IHI-91. Biotechnology and Bioengineering, 70(6), 630–637. doi:10.1002/1097-0290(20001220) 70:6<630::AID-BIT4>3.0.CO;2-Q.

    Article  CAS  Google Scholar 

  • Benjamin, S., & Pandey, S. (1997). Enhancement of lipase production during repeated batch culture using immobilized Candida rugosa. Process Biochemistry, 32(5), 437–440. doi:10.1016/S0032-9592(96)00102-1.

    Article  CAS  Google Scholar 

  • Benjamin, S., & Pandey, A. (2001). Isolation and characterization of three distinct forms of lipases from Candida rugosa produced in solid-state fermentation. Brazilian Archives of Biology and Technology, 44(2), 213–221. doi:10.1590/S1516-89132001000200016.

    Article  CAS  Google Scholar 

  • Boareto, A. J. M., Souza, M. B., Valero, F., & Valdman, B. (2007). A hybrid neural model (HNM) for the on-line monitoring of lipase production by Candida rugosa. Journal of Chemical Technology and Biotechnology, 82, 319–327. doi:10.1002/jctb.1678.

    Article  CAS  Google Scholar 

  • Bornscheuer, U. T., Bessler, C., Srinivas, R., & Krishna, S. H. (2002). Optimizing lipases and related enzymes for efficient application. Trends in Biotechnology, 20, 433–437. doi:10.1016/S0167-7799(02)02046-2.

    Article  CAS  Google Scholar 

  • Burkert, J. F. M., Maugeri, F., & Rodrigues, M. I. (2004). Optimization of extracellular lipase production by Geotrichum sp. using factorial design. Bioresource Technology, 91, 77–84. doi:10.1016/S0960-8524(03)00152-4.

    Article  CAS  Google Scholar 

  • Burkert, J. F. M., Maldonado, R. R., Maugeri, F., & Rodrigues, M. I. (2005). Comparison of lipase production by Geotrichum candidum in stirring and airlift fermenters. Journal of Chemical Technology and Biotechnology, 80, 61–67. doi:10.1002/jctb.1157.

    Article  CAS  Google Scholar 

  • Carvalho, N. B., Souza, R. L., Castro, H. F., Zanin, G. M., Lima, A. S., & Soares, C. M. L. (2008). Sequential production of amylolytic and lipolytic enzymes by bacterium strain isolated from petroleum contaminated soil. Applied Biochemistry and Biotechnology, 150, 25–32. doi:10.1007/s12010-008-8194-3.

    Article  CAS  Google Scholar 

  • Cavalcanti, E. A. C., Gutarra, M. L. E., Freire, D. M. G., Castilho, L. R., & Sant’Anna, G. L,. Jr. (2005). Lipase production by solid-state fermentation in fixed-bed bioreactors. Brazilian Archives of Biology and Technology, 48, 79–84.

    Google Scholar 

  • Ciafardini, G., Zullo, B. A., & Iride, A. (2006). Lipase production by yeasts from extra virgin olive oil. Food Microbiology, 23, 60–67. doi:10.1016/j.fm.2005.01.009.

    Article  CAS  Google Scholar 

  • Cihangir, N., & Sarikaya, E. (2004). Investigation of lipase production by a new isolated of Aspergillus sp. World Journal of Microbiology & Biotechnology, 20, 193–197. doi:10.1023/B:WIBI.0000021781.61031.3a.

    Article  CAS  Google Scholar 

  • Colen, G., Junqueira, R. G., & Moraes-Santos, T. (2006). Isolation and screening of alkaline lipase-producing fungi from Brazilian savanna soil. World Journal of Microbiology & Biotechnology, 22, 881–885. doi:10.1007/s11274-005-9118-9.

    Article  CAS  Google Scholar 

  • Cos, O., Resina, D., Ferrer, P., Montesinos, J. L., & Valero, F. (2005). Heterologous production of Rhizopus oryzae lipase in Pichia pastoris using the alcohol oxidase and formaldehyde dehydrogenase promoters in batch and fed-batch cultures. Biochemical Engineering Journal, 26, 86–94. doi:10.1016/j.bej.2005.04.005.

    Article  CAS  Google Scholar 

  • D’Annibale, A., Brozzoli, V., Crognale, S., Gallo, A. M., Fredirici, F., & Petruccioli, M. (2006a). Optimisation by response surface methodology of fungal lipase production on olive mill wastewater. Journal of Chemical Technology and Biotechnology, 81, 1586–1593. doi:10.1002/jctb.1554.

    Article  CAS  Google Scholar 

  • D’Annibale, A., Sermanni, G. G., Federici, F., & Petruccioli, M. (2006b). Olive-oil wastewaters: A promising substrate for microbial lipase production. Bioresource Technology, 97, 1828–1833. doi:10.1016/j.biortech.2005.09.001.

    Article  CAS  Google Scholar 

  • Diaz, J. C., Rodriguez, J. A., Roussos, S., Cordova, J., Abousalham, A., Carriere, F., et al. (2006). Lipase from the thermotolerant fungus Rhizopus homothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures. Enzyme and Microbial Technology, 39, 1042–1050. doi:10.1016/j.enzmictec.2006.02.005.

    Article  CAS  Google Scholar 

  • Dominguez, A., Costas, M., Longo, M. A., & Sanroman, A. (2003). A novel application of solid state culture: Production of lipases by Yarrowia lipolytica. Biotechnological Letters, 25, 1225–1229. doi:10.1023/A:1025068205961.

    Article  CAS  Google Scholar 

  • Dutra, J. C. V., Terzi, S. C., Bevilaqua, J. V., Damaso, M. C. T., Couri, S., Langone, M. A. P., et al. (2008). Lipase production in solid-state fermentation monitoring biomass growth of Aspergillus niger using digital image processing. Applied Biochemistry and Biotechnology, 147, 63–75. doi:10.1007/s12010-007-8068-0.

    Article  CAS  Google Scholar 

  • Elitol, M., & Ozer, D. (2000). Lipase production by immobilized Rhizopus arrhizus. Process Biochemistry, 36, 219–223. doi:10.1016/S0032-9592(00)00191-6.

    Article  Google Scholar 

  • Ellaiah, P., Prabhakar, T., Ramakrishna, B., Taleb, A. T., & Adinarayana, K. (2004). Production of lipase by immobilized cells of Aspergillus niger. Process Biochemistry, 39, 525–528. doi:10.1016/S0032-9592(01)00340-5.

    Article  CAS  Google Scholar 

  • Ertugrul, S., Donmez, G., & Takaç, S. (2007). Isolation of lipase producing Bacillus sp. from olive mill wastewater and improving its enzyme activity. Journal of Hazardous Materials, 149, 720–724. doi:10.1016/j.jhazmat.2007.04.034.

    Article  CAS  Google Scholar 

  • Falony, G., Armas, J. C., Mendoza, J. C. D., & Hernandez, J. L. M. (2006). Production of extracellular lipase from Aspergillus niger by solid-state fermentation. Food Technology and Biotechnology, 44(2), 235–240.

    CAS  Google Scholar 

  • Fernandes, M. L. M., Saad, E. B., Meira, J. A., Ramos, L. P., Mitchell, D. A., & Krieger, N. (2007). Esterification and transesterification reactions catalyzed by addition of fermented solids to organic reaction media. Journal of Molecular Catalysis. B, Enzymatic, 44, 8–13. doi:10.1016/j.molcatb.2006.08.004.

    Article  CAS  Google Scholar 

  • Fickers, P., Ongena, M., Destain, J., Weekers, F., & Thonart, P. (2006). Production and down-stream processing of an extracellular lipase from the yeast Yarrowia lipolytica. Enzyme and Microbial Technology, 38, 756–759. doi:10.1016/j.enzmictec.2005.08.005.

    Article  CAS  Google Scholar 

  • Franken, L.P.G., Marcon, N.S., Treichel, H., Oliveira, D., Freire, D.M.G., Dariva, C. et al. (2009). Effect of treatment with compressed propane on lipases hydrolytic activity. Food and Bioprocess Technology. doi:10.1007/s11947-008-0087-5.

  • Ghadge, R. S., Ekambara, K., & Joshi, J. B. (2005). Role of hydrodynamic flow parameters in lipase deactivation in bubble column reactor. Chemical Engineering Science, 60, 6320–6335. doi:10.1016/j.ces.2005.04.045.

    Article  CAS  Google Scholar 

  • Gordillo, M. A., Montesinos, J. L., Casas, C., Valero, F., Lafuente, J., & Sola, C. (1998a). Improving lipase production from Candida rugosa by a biochemical engineering approach. Chemistry and Physics of Lipids, 93, 131–142. doi:10.1016/S0009-3084(98) 00037-1.

    Article  CAS  Google Scholar 

  • Gordillo, M. A., Sanz, A., Sanchez, A., Valero, F., Montesinos, J. L., Lafuente, J., et al. (1998b). Enhancement of Candida rugosa lipase production by using different control fed-batch operacional strategies. Biotechnology and Bioengineering, 60(2), 156–168. doi:10.1002/(SICI)1097-0290(19981020)60:2<156::AID-BIT3>3.0.CO;2-M.

    Article  CAS  Google Scholar 

  • Grbavcic, S. Z., Dimitrijevic-Brankovic, S. I., Bezbradica, D. I., Siler-Marinkovic, S. S., & Knezevic, Z. D. (2007). Effect of fermentation conditions on lipase production by Candida utilis. Journal of the Serbian Chemical Society, 72(8–9), 757–765. doi:10.2298/JSC0709757G.

    Article  CAS  Google Scholar 

  • Griebeler, N., Polloni, A.E., Remonatto, D., Arbter, F., Vardanega, R., Cechet, J.L. et al. (2009). Isolation and screening of lipase-producing fungi with hydrolytic activity. Food and Bioprocess Technology. doi:10.1007/s11947-008-0176-5.

  • Gupta, R., Gupta, N., & Rathi, P. (2004). Bacterial lipases: An overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64, 763–781. doi:10.1007/s00253-004-1568-8.

    Article  CAS  Google Scholar 

  • Gupta, N., Shai, V., & Gupta, R. (2007). Alkaline lipase from a novel strain Burkholderia multivorans: Statistical medium optimization and production in a bioreactor. Process Biochemistry, 42(2), 518–526. doi:10.1016/j.procbio.2006.10.006.

    Article  CAS  Google Scholar 

  • Haaland, P. D. (1989). Experimental design in biotechnology. New York, USA: Marcel Dekker.

    Google Scholar 

  • Haider, M. A., Pakshirajan, K., Singh, A., & Chaudhry, S. (2008). Artificial neural network-genetic algorithm approach to optimize media constituents for enhancing lipase production by a soil microorganism. Applied Biochemistry and Biotechnology, 144, 225–235. doi:10.1007/s12010-007-8017-y.

    Article  CAS  Google Scholar 

  • He, Y. Q., & Tan, T. W. (2006). Use of response surface methodology to optimize culture medium for lipase for production of lipase with Candida sp. 99-125. Journal of Molecular Catalysis. B, Enzymatic, 43, 9–14. doi:10.1016/j.molcatb.2006.02.018.

    Article  CAS  Google Scholar 

  • Ikeda, S., Nikaido, K., Araki, K., Yoshitake, A., Kumagai, H., & Isoai, A. (2004). Production of recombinant human lysosomal acid lipase in Schizosaccharomyces pombe: Development of a fed-batch fermentation and purification process. Journal of Bioscience and Bioengineering, 98(5), 366–373.

    CAS  Google Scholar 

  • Immanuel, G., Esakkiraj, P., Jebadhas, A., Iyapparaj, P., & Palavesam, A. (2008). Investigation of lipase production by milk isolate Serratia rudidaea. Food Technology and Biotechnology, 46(1), 60–65.

    CAS  Google Scholar 

  • Ito, T., Kikuta, H., Nagomori, E., Honda, H., Ogino, H., Ishikawa, H., et al. (2001). Lipase production in two-step fed-batch culture of organic solvent-tolerant Pseudomonas aeruginosa LST-03. Journal of Bioscience and Bioengineering, 91(3), 245–250. doi:10.1263/jbb.91.245.

    Article  CAS  Google Scholar 

  • Jensen, B., Nebelong, P., Olsen, J., & Reeslev, M. (2002). Enzyme production in continuous cultivation by the thermophilic fungus Thermomyces lanuginosus. Biotechnological Letters, 24, 41–45. doi:10.1023/A:1013805232462.

    Article  CAS  Google Scholar 

  • Joseph, B., Ramteke, P. W., & Thomas, G. (2008). Cold active microbial lipases: Some hot issues and recent developments. Biotechnology Advances, 26, 457–470. doi:10.1016/j.biotechadv.2008.05.003.

    Article  CAS  Google Scholar 

  • Kar, T., Delvigne, F., Masson, M., Destain, J., & Thonart, P. (2008). Investigation of the effect of different extracellular factors on the lipase production by Yarrowia lipolityca on the basis of a scale-down approach. Journal of Industrial Microbiology & Biotechnology, 35, 1053–1059. doi:10.1007/s10295-008-0382-1.

    Article  CAS  Google Scholar 

  • Kaushik, R., Saran, S., Isar, J., & Saxena, R. K. (2006). Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus. Journal of Molecular Catalysis. B, Enzymatic, 40, 121–126. doi:10.1016/j.molcatb.2006.02.019.

    Article  CAS  Google Scholar 

  • Kempka, A. P., Lipke, N. R., Pinheiro, T. L. F., Menoncin, S., Treichel, H., Freire, D. M. G., et al. (2008). Response surface method to optimize the production and characterization of lipase from Penicillium verrucosum in solid-state fermentation. Bioprocess and Biosystems Engineering, 31, 119–125. doi:10.1007/s00449-007-0154-8.

    Article  CAS  Google Scholar 

  • Khuri, A. I., & Cornell, J. A. (1987). Response surface-design and analysis. New York, USA: ASQC, Marcel Dekker.

    Google Scholar 

  • Kim, B. S., & Hou, C. T. (2006). Production of lipase by high cell density fed-batch culture of Candida cylindracea. Bioprocess and Biosystems Engineering, 29, 59–64. doi:10.1007/s00449-006-0058-z.

    Article  CAS  Google Scholar 

  • Kiran, G. S., Shanmughapriya, S., Jayalakshmi, J., Selvin, J., Gandhimathi, R., Sivaramakrishnan, S., et al. (2008). Optimization of extracellular psychrophilic alkaline lipase produced by marine Pseudomonas sp. (MSI057). Bioprocess and Biosystems Engineering, 31, 483–492. doi:10.1007/s00449-007-0186-0.

    Article  CAS  Google Scholar 

  • Kumar, S. S., & Gupta, R. (2008). An extracellular lipase from Trichosporon asahii MSR 54: Medium optimization and enantioselective deacetylation of phenyl ethyl acetate. Process Biochemistry, 43, 1054–1060. doi:10.1016/j.procbio.2008.05.017.

    Article  CAS  Google Scholar 

  • Li, C. Y., Chen, S. J., Cheng, C. Y., & Chen, T. L. (2005). Production of Acinetobacter radioresistens lipase with repeated fed-batch culture. Biochemical Engineering Journal, 25, 195–199. doi:10.1016/j.bej.2005.05.002.

    Article  CAS  Google Scholar 

  • Lin, E. S., Wang, C. C., & Sung, S. C. (2006). Cultivating conditions influence lipase production by the edible basidiomycete Antrodia cinnamomea in submerged culture. Enzyme and Microbial Technology, 39, 98–102. doi:10.1016/j.enzmictec.2005.10.002.

    Article  CAS  Google Scholar 

  • Liu, Z., Chi, Z., Wang, L., & Li, J. (2008). Production, purification and characterization of an extracellular lipase from Aureobasidium pullulans HN2.3 with potential application for the hydrolysis of edible oils. Biochemical Engineering Journal, 40, 445–451. doi:10.1016/j.bej.2008.01.014.

    Article  CAS  Google Scholar 

  • Lopes, M., Gomes, N., Mota, M., & Belo, I. (2009). Yarrowia lipolytica growth under increased air pressure: Influence on enzyme production. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-008-8359-0.

  • Mahanta, N., Gupta, A., & Khare, S. K. (2008). Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate. Bioresource Technology, 99, 1729–1735. doi:10.1016/j.biortech.2007.03.046.

    Article  CAS  Google Scholar 

  • Mala, J. G. S., Edwinoliver, N. G., Kamini, N. R., & Puvanakrishnan, R. (2007). Mixed substrate solid state fermentation for production and extraction of lipase from Aspergillus niger MTCC 2594. Journal of General and Applied Microbiology, 53, 247–253. doi:10.2323/jgam.53.247.

    Article  CAS  Google Scholar 

  • Martinez-Ruiz, A., Garcia, H. S., Saucedo-Castaneda, G., & Favela-Torres, E. (2008). Organic phase synthesis of ethyl oleate using lipases produced by solid-state fermentation. Applied Biochemistry and Biotechnology, 151, 393–401. doi:10.1007/s12010-008-8207-2.

    Article  CAS  Google Scholar 

  • Menoncin, S., Domingues, N. M., Freire, D. M. G., Toniazzo, G., Cansian, R. L., Oliveira, J. V. et al. (2008). Study of the extraction, concentration, and partial characterization of lipases obtained from Penicillium verrucosum using solid-state fermentation of soybean bran. Food and Bioprocess Technology. doi:10.1007/s11947-008-0104-8.

  • Montesinos, J. L., Gordillo, M. A., Valero, F., Lafuente, J., Sola, C., & Valdman, B. (1997). Improvement of lipase productivity in bioprocess using a structured mathematical model. Journal of Biotechnology, 52, 207–218. doi:10.1016/S0168-1656(96) 01646-X.

    Article  CAS  Google Scholar 

  • Montesinos, J. L., Dalmau, E., & Casas, C. (2003). Lipase production in continuous culture of Candida rugosa. Journal of Chemical Technology and Biotechnology, 78, 753–761. doi:10.1002/jctb.859.

    Article  CAS  Google Scholar 

  • Nawani, N., & Kaur, J. (2007). Studies on lipolytic isoenzymes from a thermophilic Bacillus sp.: Production, purification and biochemical characterization. Enzyme and Microbial Technology, 40, 881–887. doi:10.1016/j.enzmictec.2006.07.006.

    Article  CAS  Google Scholar 

  • Palma, M. B., Pinto, A. L., Gombert, A. K., Seitz, K. H., Kivatinitz, S. C., Castilho, L. R., et al. (2000). Lipase production by Penicillium restrictum using solid waste of industrial babassu oil production as substrate. Applied Biochemistry and Biotechnology, 84–86, 1137–1145. doi:10.1385/ABAB:84-86:1-9:1137.

    Article  Google Scholar 

  • Park, H., Lee, K., Chi, Y., & Jeong, S. (2005). Effects of methanol on the catalytic properties of porcine pancreatic lipase. Journal of Microbiology and Biotechnology, 15(2), 296–301.

    CAS  Google Scholar 

  • Pinheiro, T. L. F., Menoncin, S., Domingues, N., Oliveira, D., Treichel, H., Di Luccio, M., et al. (2008). Production and partial characterization of lipase from Penicillium verrucosum obtained by submerged fermentation of conventional and industrial media. Ciência e Tecnologia de Alimentos, 28(2), 444–450.

    Article  CAS  Google Scholar 

  • Potumarthi, R., Subhakar, C., Vanajakshi, J., & Jetty, A. (2008). Effect of aeration and agitation regimes on lipase production by newly isolated Rhodotorula mucilaginosa-MTCC 8737 in stirred tank reactor using molasses as sole carbon source. Applied Biochemistry and Biotechnology, 151, 700–710. doi:10.1007/s12010-008-8293-1.

    Article  CAS  Google Scholar 

  • Puthli, M. S., Rathod, V. K., & Pandit, A. B. (2006). Optimization of lipase production in a triple impeller bioreactor. Biochemical Engineering Journal, 27, 287–294. doi:10.1016/j.bej.2005.08.016.

    Article  CAS  Google Scholar 

  • Rajendran, A., Palanisamy, A., & Thangavelu, V. (2008). Evaluation of medium components by Plackett–Burman statistical design for lipase production by Candida rugosa and kinetic modeling. Chinese Journal of Biotechnology, 24(3), 436–444. doi:10.1016/S1872-2075(08) 60024-2.

    Article  CAS  Google Scholar 

  • Rodrigues, M. I., & Iemma, A. F. (2005). Planejamento de Experimentos e Otimização de Processos: Uma estratégia seqüencial de planejamentos. Campinas, BRA: Casa do Pão.

    Google Scholar 

  • Ruchi, G., Anshu, G., & Khare, S. K. (2008). Lipase from solvent tolerant Pseudomonas aeruginosa strain: Production optimization by response surface methodology and application. Bioresource Technology, 99, 4796–4802. doi:10.1016/j.biortech.2007.09.053.

    Article  CAS  Google Scholar 

  • Shariff, F. M., Leow, T. C., Mukred, A. D., Salleh, A. B., Basri, M., & Rahman, R. N. Z. R. A. (2007). Production of L2 lipase by Bacillus sp. strain L2: Nutritional and physical factors. Journal of Microbiology and Biotechnology, 47, 406–412. doi:10.1002/jobm.200610275.

    CAS  Google Scholar 

  • Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Production, purification, characterization, and applications of lipases. Biotechnology Advances, 19, 627–662. doi:10.1016/S0734-9750(01) 00086-6.

    Article  CAS  Google Scholar 

  • Sun, S. Y., & Xu, Y. (2008). Solid-state for ‘whole-cell synthetic lipase’ production from Rhizopus chinesis and identification of the functional enzyme. Process Biochemistry, 43, 219–224. doi:10.1016/j.procbio.2007.11.010.

    Article  CAS  Google Scholar 

  • Surribas, A., Stahn, R., Montesinos, J. L., Enfors, S. O., Valero, F., & Jahic, M. (2007). Production of a Rhizopus oryzae lipase from Pichia pastoris using alternative operational strategies. Journal of Biotechnology, 130, 291–299. doi:10.1016/j.jbiotec.2007.04.009.

    Article  CAS  Google Scholar 

  • Takaç, S., & Marul, B. (2008). Effects of lipidic carbon sources on the extracelular lipolytic activity of a newly isolated strain of Bacillus subtilis. Journal of Industrial Microbiology & Biotechnology, 35, 1019–1025. doi:10.1007/s10295-008-0377-y.

    Article  CAS  Google Scholar 

  • Tan, T., & Yin, C. (2005). The mechanism and kinetic model for glycerolysis by 1, 3 position specific lipase from Rhizopus arrhizus. Biochemical Engineering Journal, 25, 39–45. doi:10.1016/j.bej.2005.03.009.

    Article  CAS  Google Scholar 

  • Tan, T. W., Zhang, M., Wang, B. W., Ying, C. H., & Deng, L. (2003). Screening of high lipase producing Candida sp. and production of lipase by fermentation. Process Biochemistry, 39, 459–465. doi:10.1016/S0032-9592(03)00091-8.

    Article  CAS  Google Scholar 

  • Teng, Y., & Xu, Y. (2008). Culture condition improvement for whole-cell lipase production in submerged fermentation by Rhizopus chinensis using statistical method. Bioresource Technology, 99, 3900–3907. doi:10.1016/j.biortech.2007.07.057.

    Article  CAS  Google Scholar 

  • Teng, Y., Xu, Y., & Wang, D. (2009). Changes in morphology of Rhizopus chinensis in submerged fermentation and their effect on production of mycelium-bound lipase. Bioprocess and Biosystems Engineering. doi:10.1007/s00449-008-0259-8.

  • Vakhlu, J., & Kour, A. (2006). Yeast lipases: Enzyme purification, biochemical properties and gene cloning. Electronic Journal of Biotechnology, 9, 1–17. doi:10.2225/vol9-issue1-fulltext-4.

    Article  CAS  Google Scholar 

  • Vargas, G. D. L. P., Treichel, H., Oliveira, D., Beneti, S. C., Freire, D. M. G., & Di Luccio, M. (2008). Optimization of lipase production by Penicillium simplicissimum in soybean meal. Journal of Chemical Technology and Biotechnology, 83, 47–54. doi:10.1002/jctb.1776.

    Article  CAS  Google Scholar 

  • Volpato, G., Rodrigues, R. C., Heck, J. X., & Ayub, M. A. Z. (2008). Production of organic solvent tolerant lipase by Staphylococcus caseolyticus EX17 using raw glycerol as substrate. Journal of Chemical Technology and Biotechnology, 83, 821–828. doi:10.1002/jctb.1875.

    Article  CAS  Google Scholar 

  • Wang, L., Chi, Z. M., Wang, X. H., Liu, Z. Q., & Li, J. (2007). Diversity of lipase-producing yeasts from marine environments and oil hydrolysis by their crude enzymes. Annals of Microbiology, 4, 2–7.

    Google Scholar 

  • Wang, D., Xu, Y., & Shan, T. (2008). Effects of oils and oil-related substrates on the synthetic activity of membrane-bound lipase from Rhizopus chinensis and optimization of the lipase fermentation media. Biochemical Engineering Journal, 41, 30–37. doi:10.1016/j.bej.2008.03.003.

    Article  CAS  Google Scholar 

  • Wolski, E., Menusi, E., Mazutti, M., Toniazzo, G., Rigo, E., Cansian, R. L., et al. (2008). Response surface methodology for optimization of lipase production by an newly isolated Penicillium sp. Industrial & Engineering Chemistry Research, 47, 9651–9657. doi:10.1021/ie800658j.

    Article  CAS  Google Scholar 

  • Yan, J. Y., & Yan, Y. I. (2008). Optimization for producing cell-bound lipase from Geotrichum sp. and synthesis of methyl oleate in microaqueous solvent. Applied Microbiology and Biotechnology, 78, 431–439. doi:10.1007/s00253-007-1331-z.

    Article  CAS  Google Scholar 

  • Yang, X., Wang, B., Cui, F., & Tan, T. (2005). Production of lipase by repeated batch fermentation with immobilized Rhizopus arrhizus. Process Biochemistry, 40, 2095–2103. doi:10.1016/j.procbio.2004.07.015.

    Article  CAS  Google Scholar 

  • Zhao, W., Wang, J., Deng, R., & Wang, X. (2008). Scale-up fermentation of recombinant Candida rugosa lipase expressed in Pichia pastoris using the GAP promoter. Journal of Industrial Microbiology & Biotechnology, 35, 189–195. doi:10.1007/s10295-007-0283-8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Treichel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treichel, H., de Oliveira, D., Mazutti, M.A. et al. A Review on Microbial Lipases Production. Food Bioprocess Technol 3, 182–196 (2010). https://doi.org/10.1007/s11947-009-0202-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-009-0202-2

Keywords

Navigation