Skip to main content
Log in

A Perspective: Engineering Periosteum for Structural Bone Graft Healing

  • Symposium: New Approaches to Allograft Transplantation
  • Published:
Clinical Orthopaedics and Related Research

Abstract

Autograft is superior to both allograft and synthetic bone graft in repair of large structural bone defect largely due to the presence of multipotent mesenchymal stem cells in periosteum. Recent studies have provided further evidence that activation, expansion and differentiation of the donor periosteal progenitor cells are essential for the initiation of osteogenesis and angiogenesis of donor bone graft healing. The formation of donor cell-derived periosteal callus enables efficient host-dependent graft repair and remodeling at the later stage of healing. Removal of periosteum from bone autograft markedly impairs healing whereas engraftment of multipotent mesenchymal stem cells on bone allograft improves healing and graft incorporation. These studies provide rationale for fabrication of a biomimetic periosteum substitute that could fit bone of any size and shape for enhanced allograft healing and repair. The success of such an approach will depend on further understanding of the molecular signals that control inflammation, cellular recruitment as well as mesenchymal stem cell differentiation and expansion during the early phase of the repair process. It will also depend on multidisciplinary collaborations between biologists, material scientists and bioengineers to address issues of material selection and modification, biological and biomechanical parameters for functional evaluation of bone allograft healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–C

Similar content being viewed by others

References

  1. Abe Y, Takahata M, Ito M, Irie K, Abumi K, Minami A. Enhancement of graft bone healing by intermittent administration of human parathyroid hormone (1–34) in a rat spinal arthrodesis model. Bone. 2007;41:775–785.

    PubMed  CAS  Google Scholar 

  2. Allen MR, Hock JM, Burr DB. Periosteum: biology, regulation, and response to osteoporosis therapies. Bone. 2004; 35:1003–1012.

    PubMed  CAS  Google Scholar 

  3. Andreassen TT, Ejersted C, Oxlund H. Intermittent parathyroid hormone (1–34) treatment increases callus formation and mechanical strength of healing rat fractures. J Bone Miner Res. 1999;14:960–968.

    PubMed  CAS  Google Scholar 

  4. Ashammakhi N, Ndreu A, Piras A, Nikkola L, Sindelar T, Ylikauppila H, Harlin A, Chiellini E, Hasirci V, Redl H. Biodegradable nanomats produced by electrospinning: expanding multifunctionality and potential for tissue engineering. J Nanosci Nanotechnol. 2006;6:2693–2711.

    PubMed  CAS  Google Scholar 

  5. Augustin G, Antabak A, Davila S. The periosteum Part 1: Anatomy, histology and molecular biology. Injury. 2007;38:1115–1130.

    PubMed  Google Scholar 

  6. Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin Orthop Relat Res. 2000;371:10–27.

    PubMed  Google Scholar 

  7. Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature. 2004;432:324–331.

    PubMed  CAS  Google Scholar 

  8. Berrey BH Jr, Lord CF, Gebhardt MC, Mankin HJ. Fractures of allografts. Frequency, treatment, and end-results. J Bone Joint Surg Am. 1990;72:825–833.

    PubMed  Google Scholar 

  9. Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19:180–192.

    PubMed  CAS  Google Scholar 

  10. Bianco P, Robey PG. Stem cells in tissue engineering. Nature. 2001;414:118–121.

    PubMed  CAS  Google Scholar 

  11. Bostrom MP, Lane JM, Berberian WS, Missri AA, Tomin E, Weiland A, Doty SB, Glaser D, Rosen VM. Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J Orthop Res. 1995;13:357–367.

    PubMed  CAS  Google Scholar 

  12. Burchardt H. The biology of bone graft repair. Clin Orthop Relat Res. 1983;174:28–42.

    PubMed  Google Scholar 

  13. Burchardt H. Biology of bone transplantation. Orthop Clin North Am. 1987;18:187–196.

    PubMed  CAS  Google Scholar 

  14. Burchardt H, Enneking WF. Transplantation of bone. Surg Clin North Am. 1978;58:403–427.

    PubMed  CAS  Google Scholar 

  15. Cancedda R, Giannoni P, Mastrogiacomo M. A tissue engineering approach to bone repair in large animal models and in clinical practice. Biomaterials. 2007;28:4240–4250.

    PubMed  CAS  Google Scholar 

  16. Caplan AI. In vivo remodeling. Ann NY Acad Sci. 2002;961:307–308.

    Article  PubMed  Google Scholar 

  17. Carter DR, Beaupre GS, Giori NJ, Helms JA. Mechanobiology of skeletal regeneration. Clin Orthop Relat Res. 1998;355 Suppl:S41–55.

    PubMed  Google Scholar 

  18. Davy DT. Biomechanical issues in bone transplantation. Orthop Clin North Am. 1999;30:553–563.

    PubMed  CAS  Google Scholar 

  19. Dawson E, Mapili G, Erickson K, Taqvi S, Roy K. Biomaterials for stem cell differentiation. Adv Drug Deliv Rev. 2008;60:215–228.

    PubMed  CAS  Google Scholar 

  20. Delloye C, Simon P, Nyssen-Behets C, Banse X, Bresler F, Schmitt D. Perforations of cortical bone allografts improve their incorporation. Clin Orthop Relat. Res. 2002;396:240–247.

    PubMed  Google Scholar 

  21. Duvall CL, Robert Taylor W, Weiss D, Guldberg RE. Quantitative microcomputed tomography analysis of collateral vessel development after ischemic injury. Am J Physiol Heart Circ Physiol. 2004;287:H302–310.

    PubMed  CAS  Google Scholar 

  22. Enneking WF, Campanacci DA. Retrieved human allografts: a clinicopathological study. J Bone Joint Surg Am. 2001;83:971–986.

    PubMed  Google Scholar 

  23. Enneking WF, Mindell ER. Observations on massive retrieved human allografts. J Bone Joint Surg Am. 1991;73:1123–1142.

    PubMed  CAS  Google Scholar 

  24. Eyre-Brook AL. The periosteum: its function reassessed. Clin Orthop Relat Res. 1984;189:300–307.

    Google Scholar 

  25. Ferguson C, Alpern E, Miclau T, Helms JA. Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev. 1999;87:57–66.

    PubMed  CAS  Google Scholar 

  26. Fox EJ, Hau MA, Gebhardt MC, Hornicek FJ, Tomford WW, Mankin HJ. Long-term followup of proximal femoral allografts. Clin OrthopRelat Res. 2002;397:106–113.

    Google Scholar 

  27. Garbuz DS, Masri BA, Czitrom AA. Biology of allografting. Orthop Clin North Am. 1998;29:199–204.

    PubMed  CAS  Google Scholar 

  28. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5:623–628.

    PubMed  CAS  Google Scholar 

  29. Goldberg VM, Stevenson S. The biology of bone grafts. Semin Arthroplasty. 1993;4:58–63.

    PubMed  CAS  Google Scholar 

  30. Gray JC, Elves MW. Donor cells’ contribution to osteogenesis in experimental cancellous bone grafts. Clin Orthop Relat Res. 1982;163:261–271.

    PubMed  Google Scholar 

  31. Griffith LG, Naughton G. Tissue engineering–current challenges and expanding opportunities. Science. 2002;295:1009–1014.

    PubMed  CAS  Google Scholar 

  32. Guilak F, Awad HA, Fermor B, Leddy HA, Gimble JM. Adipose-derived adult stem cells for cartilage tissue engineering. Biorheology. 2004;41:389–399.

    PubMed  CAS  Google Scholar 

  33. Guldberg RE, Ballock RT, Boyan BD, Duvall CL, Lin AS, Nagaraja S, Oest M, Phillips J, Porter BD, Robertson G, Taylor WR. Analyzing bone, blood vessels, and biomaterials with microcomputed tomography. IEEE Eng Med Biol Mag. 2003;22:77–83.

    PubMed  CAS  Google Scholar 

  34. Guldberg RE, Oest M, Lin AS, Ito H, Chao X, Gromov K, Goater JJ, Koefoed M, Schwarz EM, O’Keefe RJ, Zhang X. Functional integration of tissue-engineered bone constructs. J Musculoskelet Neuronal Interact. 2004;4:399–400.

    PubMed  CAS  Google Scholar 

  35. Hashimoto T, Shigetomi M, Ohno T, Matsunaga T, Muramatsu K, Tanaka H, Sugiyama T, Taguchi T. Sequential treatment with intermittent low-dose human parathyroid hormone (1–34) and bisphosphonate enhances large-size skeletal reconstruction by vascularized bone transplantation. Calcif Tissue Int. 2007;81:232–239.

    PubMed  CAS  Google Scholar 

  36. Hee CK, Jonikas MA, Nicoll SB. Influence of three-dimensional scaffold on the expression of osteogenic differentiation markers by human dermal fibroblasts. Biomaterials. 2006;27:875–884.

    PubMed  CAS  Google Scholar 

  37. Herschman HR. Prostaglandin synthase 2. Biochem. Biophys. Acta. 1996;1229:125–140.

    Google Scholar 

  38. Hirata K, Tsukazaki T, Kadowaki A, Furukawa K, Shibata Y, Moriishi T, Okubo Y, Bessho K, Komori T, Mizuno A, Yamaguchi A. Transplantation of skin fibroblasts expressing BMP-2 promotes bone repair more effectively than those expressing Runx2. Bone. 2003;32:502–512.

    PubMed  CAS  Google Scholar 

  39. Ho ML, Chang JK, Wang GJ. Effects of ketorolac on bone repair: A radiographic study in modeled demineralized bone matrix grafted rabbits. Pharmacology. 1998;57:148–159.

    PubMed  CAS  Google Scholar 

  40. Hutmacher DW, Sittinger M. Periosteal cells in bone tissue engineering. Tissue Eng. 2003;9 Suppl 1:S45–64.

    PubMed  Google Scholar 

  41. Ito Y, Fitzsimmons JS, Sanyal A, Mello MA, Mukherjee N, O’Driscoll SW. Localization of chondrocyte precursors in periosteum. Osteoarthritis Cartilage. 2001;9:215–223.

    PubMed  CAS  Google Scholar 

  42. Jayaraman K, Kotaki M, Zhang Y, Mo X, Ramakrishna S. Recent advances in polymer nanofibers. J Nanosci Nanotechnol. 2004;4:52–65.

    PubMed  CAS  Google Scholar 

  43. Kakar S, Einhorn TA, Vora S, Miara LJ, Hon G, Wigner NA, Toben D, Jacobsen KA, Al-Sebaei MO, Song M, Trackman PC, Morgan EF, Gerstenfeld LC, Barnes GL. Enhanced chondrogenesis and Wnt-signaling in parathyroid hormone treated fractures. J Bone Miner Res. 2007;22:1903–1912.

    PubMed  CAS  Google Scholar 

  44. Kandziora F, Pflugmacher R, Scholz M, Knispel C, Hiller T, Schollmeier G, Bail H, Schmidmaier G, Duda G, Raschke M, Haas NP. Comparison of BMP-2 and combined IGF-I/TGF-ss1 application in a sheep cervical spine fusion model. Eur Spine J. 2002;11:482–493.

    PubMed  CAS  Google Scholar 

  45. Kim HW, Jahng JS. Effect of intermittent administration of parathyroid hormone on fracture healing in ovariectomized rats. Iowa Orthop J. 1999;19:71–77.

    PubMed  CAS  Google Scholar 

  46. Kim TG, Park TG. Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly(D,L-lactic-co-glycolic acid) nanofiber mesh. Tissue Eng. 2006;12:221–233.

    PubMed  CAS  Google Scholar 

  47. King KF. Periosteal pedicle grafting in dogs. J Bone Joint Surg Br. 1976;58:117–121.

    PubMed  CAS  Google Scholar 

  48. Knothe Tate ML, Ritzman TF, Schneider E, Knothe UR. Testing of a new one-stage bone-transport surgical procedure exploiting the periosteum for the repair of long-bone defects. J Bone Joint Surg Am. 2007;89:307–316.

    PubMed  Google Scholar 

  49. Kostopoulos L, Karring T. Role of periosteum in the formation of jaw bone. An experiment in the rat. J Clin Periodontol. 1995;22:247–254.

    PubMed  CAS  Google Scholar 

  50. Krebsbach PH, Gu K, Franceschi RT, Rutherford RB. Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo. Hum Gene Ther. 2000;11:1201–1210.

    PubMed  CAS  Google Scholar 

  51. Le AX, Miclau T, Hu D, Helms JA. Molecular aspects of healing in stabilized and non-stabilized fractures. J Orthop Res. 2001;19:78–84.

    PubMed  CAS  Google Scholar 

  52. Leunig M, Demhartner TJ, Sckell A, Fraitzl CR, Gries N, Schenk RK, Ganz R. Quantitative assessment of angiogenesis and osteogenesis after transplantation of bone: comparison of isograft and allograft bone in mice. Acta Orthop Scand. 1999;70:374–380.

    Article  PubMed  CAS  Google Scholar 

  53. Leunig M, Yuan F, Berk DA, Gerweck LE, Jain RK. Angiogenesis and growth of isografted bone: quantitative in vivo assay in nude mice. Lab Invest. 1994;71:300–307.

    PubMed  CAS  Google Scholar 

  54. Lord CF, Gebhardt MC, Tomford WW, Mankin HJ. Infection in bone allografts. Incidence, nature, and treatment. J Bone Joint Surg Am. 1988;70:369–376.

    PubMed  CAS  Google Scholar 

  55. Ma T, Gutnick J, Salazar B, Larsen MD, Suenaga E, Zilber S, Huang Z, Huddleston J, Smith RL, Goodman S. Modulation of allograft incorporation by continuous infusion of growth factors over a prolonged duration in vivo. Bone. 2007;41:386–392.

    PubMed  CAS  Google Scholar 

  56. Ma Z, Kotaki M, Inai R, Ramakrishna S. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng. 2005;11:101–109.

    PubMed  Google Scholar 

  57. Machold R, Hayashi S, Rutlin M, Muzumdar MD, Nery S, Corbin JG, Gritli-Linde A, Dellovade T, Porter JA, Rubin LL, Dudek H, McMahon AP, Fishell G. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron. 2003;39:937–950.

    PubMed  CAS  Google Scholar 

  58. Mbalaviele G, Sheikh S, Stains JP, Salazar VS, Cheng SL, Chen D, Civitelli R. Beta-catenin and BMP-2 synergize to promote osteoblast differentiation and new bone formation. J Cell Biochem. 2005;94:403–418.

    PubMed  CAS  Google Scholar 

  59. Muramatsu K, Bishop AT. Cell repopulation in vascularized bone grafts. J Orthop Res. 2002;20:772–778.

    PubMed  Google Scholar 

  60. Muramatsu K, Valenzuela RG, Bishop AT. Detection of chimerism following vascularized bone allotransplantation by polymerase chain reaction using a Y-chromosome specific primer. J Orthop Res. 2003;21:1056–1062.

    PubMed  CAS  Google Scholar 

  61. Nakahara H, Bruder SP, Goldberg VM, Caplan AI. In vivo osteochondrogenic potential of cultured cells derived from the periosteum. Clin Orthop Relat Res. 1990;259:223–232.

    PubMed  Google Scholar 

  62. Nakahara H, Bruder SP, Haynesworth SE, Holecek JJ, Baber MA, Goldberg VM, Caplan AI. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone. 1990;11:181–188.

    PubMed  CAS  Google Scholar 

  63. Nakahara H, Goldberg VM, Caplan AI. Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J Orthop Res. 1991;9:465–476.

    PubMed  CAS  Google Scholar 

  64. Nakazawa T, Nakajima A, Shiomi K, Moriya H, Einhorn TA, Yamazaki M. Effects of low-dose, intermittent treatment with recombinant human parathyroid hormone (1–34) on chondrogenesis in a model of experimental fracture healing. Bone. 2005;37:711–719.

    PubMed  CAS  Google Scholar 

  65. O’Driscoll SW, Fitzsimmons JS. The role of periosteum in cartilage repair. Clin Orthop Relat Res. 2001;391 Suppl:S190–207.

    PubMed  Google Scholar 

  66. Okazaki K, Jingushi S, Ikenoue T, Urabe K, Sakai H, Iwamoto Y. Expression of parathyroid hormone-related peptide and insulin-like growth factor I during rat fracture healing. J Orthop Res. 2003;21:511–520.

    PubMed  CAS  Google Scholar 

  67. O’Keefe RJ, Tiyapatanaputi P, Xie C, Li TF, Clark C, Zuscik MJ, Chen D, Drissi H, Schwarz E, Zhang X. COX-2 has a critical role during incorporation of structural bone allografts. Ann NY Acad Sci. 2006;1068:532–542.

    PubMed  CAS  Google Scholar 

  68. Orwoll ES. Toward an expanded understanding of the role of the periosteum in skeletal health. J Bone Miner Res. 2003;18:949–954.

    PubMed  Google Scholar 

  69. Ouyang HW, Cao T, Zou XH, Heng BC, Wang LL, Song XH, Huang HF. Mesenchymal stem cell sheets revitalize nonviable dense grafts: implications for repair of large-bone and tendon defects. Transplantation. 2006;82:170–174.

    PubMed  Google Scholar 

  70. Owen GR, Jackson J, Chehroudi B, Burt H, Brunette DM. A PLGA membrane controlling cell behaviour for promoting tissue regeneration. Biomaterials. 2005;26:7447–7456.

    PubMed  CAS  Google Scholar 

  71. Park KE, Kang HK, Lee SJ, Min BM, Park WH. Biomimetic nanofibrous scaffolds: preparation and characterization of PGA/chitin blend nanofibers. Biomacromolecules. 2006;7:635–643.

    PubMed  CAS  Google Scholar 

  72. Peng H, Wright V, Usas A, Gearhart B, Shen HC, Cummins J, Huard J. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest. 2002;110:751–759.

    PubMed  CAS  Google Scholar 

  73. Phillips JE, Guldberg RE, Garcia AJ. Dermal fibroblasts genetically modified to express Runx2/Cbfa1 as a mineralizing cell source for bone tissue engineering. Tissue Eng. 2007;13:2029–2040.

    PubMed  CAS  Google Scholar 

  74. Phillips JE, Hutmacher DW, Guldberg RE, Garcia AJ. Mineralization capacity of Runx2/Cbfa1-genetically engineered fibroblasts is scaffold dependent. Biomaterials. 2006;27:5535–5545.

    PubMed  CAS  Google Scholar 

  75. Reynolds DG, Hock C, Shaikh S, Jacobson J, Zhang X, Rubery PT, Beck CA, O’Keefe RJ, Lerner AL, Schwarz EM, Awad HA. Micro-computed tomography prediction of biomechanical strength in murine structural bone grafts. J Biomech. 2007;40:3178–3186.

    PubMed  Google Scholar 

  76. Rutherford RB, Moalli M, Franceschi RT, Wang D, Gu K, Krebsbach PH. Bone morphogenetic protein-transduced human fibroblasts convert to osteoblasts and form bone in vivo. Tissue Eng. 2002;8:441–452.

    PubMed  CAS  Google Scholar 

  77. Sandell LJ, Adler P. Developmental patterns of cartilage. Front Biosci. 1999;4:D731–742.

    PubMed  CAS  Google Scholar 

  78. Shefelbine SJ, Augat P, Claes L, Simon U. Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. J Biomech. 2005;38:2440–2450.

    PubMed  Google Scholar 

  79. Shefelbine SJ, Simon U, Claes L, Gold A, Gabet Y, Bab I, Muller R, Augat P. Prediction of fracture callus mechanical properties using micro-CT images and voxel-based finite element analysis. Bone. 2005;36:480–488.

    PubMed  Google Scholar 

  80. Shih YR, Chen CN, Tsai SW, Wang YJ, Lee OK. Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells. 2006;24:2391–2397.

    PubMed  CAS  Google Scholar 

  81. Siebers MC, ter Brugge PJ, Walboomers XF, Jansen JA. Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Biomaterials. 2005;26:137–146.

    PubMed  CAS  Google Scholar 

  82. Simon AM, Manigrasso MB, O’Connor JP. Cyclo-oxygenase 2 function is essential for bone fracture healing. J Bone Miner Res. 2002;17:963–976.

    PubMed  CAS  Google Scholar 

  83. Srouji S, Blumenfeld I, Rachmiel A, Livne E. Bone defect repair in rat tibia by TGF-beta1 and IGF-1 released from hydrogel scaffold. Cell Tissue Bank. 2004;5:223–230.

    PubMed  CAS  Google Scholar 

  84. Stankus JJ, Guan J, Fujimoto K, Wagner WR. Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials. 2006;27:735–744.

    PubMed  CAS  Google Scholar 

  85. Stevenson S. Biology of bone grafts. Orthop Clin North Am. 1999;30:543–552.

    PubMed  CAS  Google Scholar 

  86. Stevenson S, Emery SE, Goldberg VM. Factors affecting bone graft incorporation. Clin Orthop Relat Res. 1996;324:66–74.

    PubMed  Google Scholar 

  87. Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RA, Filvaroff EH. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA. 2002;99:9656–9661.

    PubMed  CAS  Google Scholar 

  88. Sudmann E, Hagen T. Indomethacin-induced delayed fracture healing. Arch Orthop Unfallchir. 1976;85:151–154.

    PubMed  CAS  Google Scholar 

  89. Takeda K, Gosiewska A, Peterkofsky B. Similar, but not identical, modulation of expression of extracellular matrix components during in vitro and in vivo aging of human skin fibroblasts. J Cell Physiol. 1992;153:450–459.

    PubMed  CAS  Google Scholar 

  90. Tencer A, Johnson K. Biomechanics in Orthopaedic Trauma. Philadelphia PA: JB Lippincott; 1994:109.

    Google Scholar 

  91. Tiyapatanaputi P, Rubery PT, Carmouche J, Schwarz EM, O’Keefe RJ, Zhang X. A novel murine segmental femoral graft model. J Orthop Res. 2004;22:1254–1260.

    PubMed  Google Scholar 

  92. Tomford WW, Mankin HJ. Bone banking. Update on methods and materials. Orthop Clin North Am. 1999;30:565–570.

    PubMed  CAS  Google Scholar 

  93. Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, Gerstenfeld L, Einhorn T, Tabin CJ, Rosen V. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet. 2006;38:1424–1429.

    PubMed  CAS  Google Scholar 

  94. Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971;231:232–235.

    PubMed  CAS  Google Scholar 

  95. Wheeler DL, Haynie JL, Berrey H, Scarborough M, Enneking W. Biomechanical evaluation of retrieved massive allografts: preliminary results. Biomed Sci Instrum. 2001;37:251–256.

    PubMed  CAS  Google Scholar 

  96. Whitfield JF. How to grow bone to treat osteoporosis and mend fractures. Curr Rheumatol Rep. 2003;5:45–56.

    PubMed  Google Scholar 

  97. Wlodarski KH. Normal and heterotopic periosteum. Clin Orthop Relat Res. 1989;241:265–277.

    PubMed  Google Scholar 

  98. Xie C, Reynolds D, Awad H, Rubery PT, Pelled G, Gazit D, Guldberg RE, Schwarz EM, O’Keefe RJ, Zhang X. Structural bone allograft combined with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering. Tissue Eng. 2007;13:435–445.

    PubMed  CAS  Google Scholar 

  99. Yuasa T, Kataoka H, Kinto N, Iwamoto M, Enomoto-Iwamoto M, Iemura S, Ueno N, Shibata Y, Kurosawa H, Yamaguchi A. Sonic hedgehog is involved in osteoblast differentiation by cooperating with BMP-2. J Cell Physiol. 2002;193:225–232.

    PubMed  CAS  Google Scholar 

  100. Zhang J, Li L. Stem cell niche - Microenvironment and beyond. J Biol Chem. 2008;283(15):9499–9503.

    PubMed  CAS  Google Scholar 

  101. Zhang X, Schwarz EM, Young DA, Puzas JE, Rosier RN, O’Keefe RJ. Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest. 2002;109:1405–1415.

    PubMed  CAS  Google Scholar 

  102. Zhang X, Xie C, Lin AS, Ito H, Awad H, Lieberman JR, Rubery PT, Schwarz EM, O’Keefe RJ, Guldberg RE. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. J Bone Miner Res. 2005;20:2124–2137.

    PubMed  CAS  Google Scholar 

  103. Zhou Y, Chen F, Ho ST, Woodruff MA, Lim TM, Hutmacher DW. Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts. Biomaterials. 2007;28:814–824.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kimberly Napoli for her help in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinping Zhang PhD.

Additional information

Each author certifies that he or she has no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements, etc) that might pose a conflict of interest in connection with the submitted article.

About this article

Cite this article

Zhang, X., Awad, H.A., O’Keefe, R.J. et al. A Perspective: Engineering Periosteum for Structural Bone Graft Healing. Clin Orthop Relat Res 466, 1777–1787 (2008). https://doi.org/10.1007/s11999-008-0312-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11999-008-0312-6

Keywords

Navigation