Skip to main content
Log in

Early phase process scale-up challenges for fungal and filamentous bacterial cultures

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Culture pelleting and morphology has a strong influence on process productivity and success for fungal and filamentous bacterial cultures. This impact is particularly evident with early phase secondary metabolite processes with limited process definition. A compilation of factors affecting filamentous or pelleting morphology described in the literature indicates potential leads for developing process-specific control methodologies. An evaluation of the factors mediating citric acid production is one example of an industrially important application of these techniques. For five model fungal and filamentous bacterial processes in an industrial fermentation pilot plant, process development strategies were developed and effectively implemented with the goal of achieving reasonable fermentation titers early in the process development cycle. Examples of approaches included the use of additives to minimize pelleting in inoculum shake flasks, the use of large-volume frozen bagged inoculum obtained from agitated seed fermentors, and variations in production medium composition and fermentor operating conditions. Results were evaluated with respect to productivity of desired secondary metabolites as well as process scalability. On-line measurements were utilized to indirectly evaluate the cultivation impact of changes in medium and process development. Key laboratory to pilot plant scale-up issues also were identified and often addressed in subsequent cultivations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones, P., Moore, D., and Trinci, A. P. J. (1988), J. Gen. Microbiol. 134, 235–240.

    CAS  Google Scholar 

  2. Calam, C. T. (1976), Process Biochem. 11(7), 7–12.

    CAS  Google Scholar 

  3. Gehrig, I., Bart, H.-J., Anke, T., and Germerdonk, R. (1998), Biotechnol. Bioeng. 59(5), 525–533.

    Article  CAS  Google Scholar 

  4. Hotop, S., Möller, J., Niehoff, J., and Schügerl, K. (1993), Process Biochem. 28, 99–104.

    Article  Google Scholar 

  5. Pallerla, S. and Chambers, R. P. (1997), Bioresour. Technol. 60(1), 1–8.

    Article  CAS  Google Scholar 

  6. Metz, B. and Kossen, N. W. F. (1977), Biotechnol. Bioeng. 19, 781–799.

    Article  CAS  Google Scholar 

  7. Schugerl, K., Wittler, R., and Lorenz, T. (1983), Trends Biotechnol. 1(4), 120–123.

    Article  Google Scholar 

  8. Whitaker, A. and Long, P. A. (1973), Process Biochem. 11, 27–31.

    Google Scholar 

  9. Whitaker, A. (1992), Appl. Biochem. Biotechnol. 32, 23–35.

    Article  CAS  Google Scholar 

  10. Lawton, P., Whitaker, A., Odell, D., and Stowell, J. D. (1989), Can. J. Microbiol. 35, 881–889.

    Article  Google Scholar 

  11. Papagianni, M. (2004), Biotechnol. Adv. 22, 189–259.

    Article  CAS  Google Scholar 

  12. van Suijdam, J. C., Kossen, N. W. F., and Paul, P. G. (1980), Eur. J. Appl. Microbiol. Biotechnol. 10, 211–221.

    Article  Google Scholar 

  13. Jüsten, P., Paul, G. C., Nienow, A. W., and Thomas, C. R. (1996), Biotechnol. Bioeng. 52, 672–684.

    Article  Google Scholar 

  14. Bujalski, W., Cox, P. W., Thomas, C. R., Nienow, A. W., Preide, M. A., and Viesturs, U. E. (1997), in Bioreactor/Process Fluid Dynamics, BHR Group Conference Series, Publication No. 25, Nienow, A. W., ed., Mechanical Engineering Publications, London, pp. 9–25.

    Google Scholar 

  15. Tucker, K. G. and Thomas, C. R. (1994), Biotechnol. Techniques 8(3), 153–156.

    Article  CAS  Google Scholar 

  16. Braun, S. and Vecht-Lifshitz, S. E. (1991), Trends Biotechnol. 9, 63–68.

    Google Scholar 

  17. Fujita, M., Iwahori, K., Tatsuta, S., and Yamakawa, K. (1994), J. Ferment. Bioeng. 78(5), 368–373.

    Article  CAS  Google Scholar 

  18. Smith, G. M. and Calam, C. T, (1980), Biotechnol. Lett. 2(6), 261–266.

    Article  CAS  Google Scholar 

  19. Tuttobello, R. and Mill, P. J. (1961), Biochem. J. 79, 51–57.

    CAS  Google Scholar 

  20. Archer, D. B., MacKenzie, D. A., and Ridout, M. J. (1995), Appl. Microbiol. Biotechnol. 44, 157–160.

    CAS  Google Scholar 

  21. Takahashi, J., Abekawa, G., and Yamada, K. (1960), J. Agric. Chem. Soc. Japan 34, 1043–1045.

    CAS  Google Scholar 

  22. Elmayergi, H., Scharer, J. M., and Young, M. M. (1973), Biotechnol. Bioeng. 15, 845–849.

    Article  CAS  Google Scholar 

  23. Cui, Y. Q., van der Lans, R. G. J. M., and Luyben, K. C. A. M. (1997), Biotechnol. Bioeng. 55(5), 715–726.

    Article  CAS  Google Scholar 

  24. Cui, Y. Q., van der Lans, R. G. J. M., Giuseppin, M. L. F., and Luyben, K. C. A. M. (1998), Enzyme Microb. Technol. 23, 157–167.

    Article  CAS  Google Scholar 

  25. Moore, J. and Bushell, M. E. (1997), Mycol. Res. 101(10), 1237–1241.

    Article  CAS  Google Scholar 

  26. Sinha, J., Bae, J. T., Park, J. P., Kim, K. H., Song, C. H., and Yun, J. W. (2001), Appl. Microbiol. Biotechnol. 56, 88–92.

    Article  CAS  Google Scholar 

  27. Berovic, M., Cimerman, A., Steiner, W., and Koloini, T. (1991), Appl. Microbiol. Biotechnol. 34, 579–581.

    Article  CAS  Google Scholar 

  28. Vecht-Lifshitz, S. E., Sasson, Y., and Braun, S. (1992), J. Appl. Bacteriol. 72, 195–200.

    CAS  Google Scholar 

  29. Belmar-Beiny, M. T. and Thomas, C. R. (1991), Biotechnol. Bioeng. 37(5), 456–462.

    Article  CAS  Google Scholar 

  30. Li, Z. J., Shukla, V., Wenger, K. S., Fordyce, A. P., Pedersen, A. G., and Marten, M. R. (2002), Biotechnol Prog. 18, 437–444.

    Article  CAS  Google Scholar 

  31. Snell, R. L. and Schweiger, L. B. (1949), US patent 2,492,667.

  32. Schweiger, L. B. and Snell, R. L. (1949), US patent 2,476,159.

  33. Martin, S. M. and Waters, W. R. (1952), Ind. Eng. Chem. 44, 2229–2233.

    Article  CAS  Google Scholar 

  34. Kubicek, C. P. and Röhr, M. (1977), Eur. J. Appl. Microbiol. Biotechnol. 4, 167–175.

    CAS  Google Scholar 

  35. Kubicek, C. P. and Röhr, M. (1978), Eur. J. Appl. Microbiol. Biotechnol. 5, 263–271.

    Article  CAS  Google Scholar 

  36. Kubicek, C. P. and Röhr, M. (1985), Appl. Environ. Microbiol. 50(5), 1336–1338.

    CAS  Google Scholar 

  37. Kubicek, C. P., Zehentgruber, O., El-Kalak, H., and Röhr, M. (1980), Eur. J. Appl. Microbiol. Biotechnol. 9, 101–115.

    Article  CAS  Google Scholar 

  38. Röhr, M., Zehentgruber, O., and Kubicek, C. P. (1981), Biotechnol. Bioeng. 23, 2433–2445.

    Article  Google Scholar 

  39. Nowakowska-Waszczuk, A., Rubaj, E., Matusiak, B., and Kosiek, E. (1984), Appl. Microbiol. Biotechnol. 20, 416–418.

    Article  CAS  Google Scholar 

  40. Röhr, M., Kubicek, C. P., Zehentgruber, O., and Orthofer, R. (1987), Appl. Microbiol. Biotechnol. 27, 235–239.

    Article  Google Scholar 

  41. Roukas, T. (1991), J. Ind. Microbiol. 7(30), 221–225.

    Article  CAS  Google Scholar 

  42. Yigitoglu, M. (1992), J. Islamic Acad. Sci. 5(2), 100–106.

    Google Scholar 

  43. Kim, K. S., Yoo, Y. J., and Kim, M. H. (1995), J. Ferment. Bioeng. 79(6), 555–559.

    Article  CAS  Google Scholar 

  44. Campeanu, G., Pele, M., and Campeanu, M. (1998), Roum. Biotechnol. Lett. 3(3), 193–200.

    CAS  Google Scholar 

  45. Wongwicharn, A., McNeil, B., and Harvey, L. M. (1999), Enzyme Microb. Technol. 24, 489–497.

    Article  CAS  Google Scholar 

  46. Blom, R. H., Pfeifer, V. F., Moyer, A. J., Traufler, D. H., Conway, H. F., Crocker, C. K., Farison, R. E., and Hannibal, D. V. (1952), Ind. Eng. Chem. 44(2), 435–440.

    Article  CAS  Google Scholar 

  47. Perlman, D. (1949), Econ. Bot. 3(4), 360–374.

    Google Scholar 

  48. Prescott, S. C. and Dunn, C. G. (1959), in Industrial Microbiology, 3rd ed., Dunn, C. G., ed., McGraw-Hill, New York, pp. 533–577.

    Google Scholar 

  49. Lockwood, L. B. and Schweiger, L. B. (1967), in Microbial Technology, Peppler, H. J., ed., Reinhold Publishing, New York, pp. 183–199.

    Google Scholar 

  50. Takahashi, J., Hidaka, H., and Yamada, K. (1965), Agric. Biol. Chem. 29(4), 331–336.

    CAS  Google Scholar 

  51. Buckland, B., Brix, T., Fastert, H., Gbewonyo, K., Hunt, G., and Jain, D. (1985), Bio/Technology 3, 982–988.

    Article  CAS  Google Scholar 

  52. Junker, B., Brix, T., Lester, M., Kardos, P., Adamca, J., Lynch, J., Schmitt, J., and Salmon, P. (2003), Biotechnol. Prog. 19, 693–705.

    Article  CAS  Google Scholar 

  53. Junker, B., Seeley, A., Lester, M., Kovatch, M., Schmitt, J., Borysewicz, S., Lynch, J., Zhang, J., and Greasham, R. (2002), Biotechnol. Bioeng. 79(6), 628–640.

    Article  CAS  Google Scholar 

  54. Dombrowski, A. W., Bills, G., Sabnis, G., Koupal, L., Meyer, R., Ondeyka, J., Giacobbe, R., Monaghan, R., and Lingham, R. (1992), J. Antibiot. 45, 671–678.

    CAS  Google Scholar 

  55. Feighner, S. D., Salituro, G., Smith, J. L., and Tsou, N. N. (1994), US patent 5,350,763.

  56. Bills, G., Dombrowski, A., Horn, W., Jansson, R., Rattray, M., Schmatz, D., and Schwartz, R. (1997), PCT Int. Appl. WO 9811891.

  57. Shastry, M., Nielsen, J., Ku, T., Hsu, M.-J., Liberator, P., Anderson, J., Schmatz, D., and Justice, M. C. (2001), Microbiology 147, 383–390.

    CAS  Google Scholar 

  58. Barrett, D. (2002), Biochim. Biophys. Acta 1587, 224–233.

    CAS  Google Scholar 

  59. Royce, P. N. (1992), Biotechnol. Bioeng. 40, 1129–1138.

    Article  CAS  Google Scholar 

  60. Junker, B. H., Mann, Z., and Hunt, G. (2000), Appl. Biochem. Biotechnol. 89, 67–83.

    Article  CAS  Google Scholar 

  61. Johansen, C. L., Coolen, L., and Hunik, J. H. (1998), Biotechnol. Prog. 14, 233–240.

    Article  CAS  Google Scholar 

  62. Papagianni, M., Mattey, M., and Kristiansen, B. (1999), Process Biochem. 35, 359–366.

    Article  CAS  Google Scholar 

  63. Tamura, S., Park, Y., Toriyama, M., and Okabe, M. (1997), J. Ferment. Bioeng. 83(6), 523–528.

    Article  CAS  Google Scholar 

  64. Qazi, G. N., Gaud, C. N., Chaturvedi, S. K., Chopra, C. L., Trager, M., and Onken, U. (1990), J. Ferment. Bioeng. 69(1), 72–74.

    Article  CAS  Google Scholar 

  65. Tucker, K. G., Patel, D., and Thomas, C. R. (1994), IChemE Res. Event 1, 107–109.

    CAS  Google Scholar 

  66. Mitard, A. and Riba, J. P. (1988), Biotechnol. Bioeng. 32, 835–840.

    Article  CAS  Google Scholar 

  67. Cui, Y. Q., van der Lans, R. G. J. M., and Luyben, K. C. A. M. (1998), Biotechnol. Bioeng. 57(4), 409–419.

    Article  CAS  Google Scholar 

  68. Tucker, K. G. and Thomas, C. R. (1992), Biotechnol. Lett. 14(11), 1071–1074.

    Article  Google Scholar 

  69. Paul, K. R., Paul, G. C., and Thomas, C. R. (1995), IChemE Res. Event 2, 980–982.

    CAS  Google Scholar 

  70. Vecht-Lifshitz, S. E., Magdassi, S., and Braun, S. (1990), Biotechnol. Bioeng. 35, 890–896.

    Article  CAS  Google Scholar 

  71. Gomez, R., Schnabel, I., and Garrido, J. (1988), Enzyme Microb. Technol. 10, 188–191.

    Article  CAS  Google Scholar 

  72. Trinci, A. P. J. (1970), Arch. Mikrobiol. 73, 353–367.

    Article  Google Scholar 

  73. Paul, G. C. and Thomas, C. R. (1995), IChemE Res. Event 2, 974–976.

    CAS  Google Scholar 

  74. Choi, D. B., Park, Y. S., and Okabe, M. (1998), J. Ferment. Bioeng. 86, 413–417.

    Article  CAS  Google Scholar 

  75. Pirt, S. J. and Callow, D. S. (1959), Nature 184(4683), 307–310.

    Article  CAS  Google Scholar 

  76. El-Enshasy, H., Hellmuth, K., and Rinas, U. (1999), Appl. Biochem. Biotechnol. 81(1), 1–11.

    Article  CAS  Google Scholar 

  77. Darby, R. T. and Mandels, G. R. (1954), Mycologia 46, 276–287.

    Google Scholar 

  78. Choi, D. B., Park, E. Y., and Okabe, M. (2000), Biotechnol. Prog. 16, 525–532.

    Article  CAS  Google Scholar 

  79. Pera, L. M. and Callieri, D. A. (1999), J. Microbiol. Biotechnol. 15(5), 647–649.

    Article  CAS  Google Scholar 

  80. Chopra, C. L., Qazi, G. N., Chaturvedi, S. K., Gaind, G. N., and Atal, C. K. (1981), J. Chem. Tech. Biotechnol. 31, 122–126.

    Article  CAS  Google Scholar 

  81. Kobayashi, H. and Suzuki, H. (1972), J. Ferment. Technol. 50(12), 835–843.

    CAS  Google Scholar 

  82. Clark, D. S. (1962), Can. J. Microbiol. 8, 133–136.

    Article  CAS  Google Scholar 

  83. Choudhary, A. Q. and Pirt, S. J. (1965), J. Gen. Microbiol. 41, 99–107.

    CAS  Google Scholar 

  84. Qadeer, M. A. and Abdullah, J. S. (1971), Pakistan J. Biochem. 4(1), 33–38.

    CAS  Google Scholar 

  85. Chen, Z.-W., Ku, C.-H., Weng, C.-J., and Chen, T.-L. (1997), Appl. Biochem. Biotechnol. 67, 249–258.

    CAS  Google Scholar 

  86. Trinci, A. P. J. (1983), Trans. Br. Mycol. Soc. 81, 408–412.

    Article  Google Scholar 

  87. Olsvik, E., Tucker, K. G., Thomas, C. R., and Kristiansen, B. (1993), Biotechnol. Bioeng. 42, 1046–1052.

    Article  CAS  Google Scholar 

  88. Papagianni, M., Mattey, M., and Kristiansen, B. (1994), Biotechnol. Lett. 16(9), 929–934.

    Article  CAS  Google Scholar 

  89. van Suijdam, J. C. and Metz, B. (1981), Biotechnol. Bioeng. 23, 111–148.

    Article  Google Scholar 

  90. Galbraith, J. C. and Smith, J. E. (1969), Trans. Br. Mycol. Soc. 52(2), 237–246.

    CAS  Google Scholar 

  91. Ho, C. S. and Smith, M. D. (1986), Biotechnol. Bioeng. 28(5), 668–677.

    Article  CAS  Google Scholar 

  92. McIntyre, M. and McNeil, B. (1997), Enzyme Microb. Technol. 21, 479–483.

    Article  CAS  Google Scholar 

  93. Kamal, K. P., Verma, U. M., Nag, A. K., and Singh, S. P. (1999), Asian J. Chem. 11(3), 1020–1022.

    CAS  Google Scholar 

  94. Cox, P. W. and Thomas, C. R. (1994), IchemE Res. Event 1, 82–84.

    CAS  Google Scholar 

  95. Vanags, J. J., Priede, M. A., Are, R. J., and Viesturs, U. E. (1992), Proceedings of the Latvian Academy of Sciences, no. 6, pt. B, Riga, Latvia, pp. 60–64.

  96. Gyamerah, M., Merichetti, G., Adedayo, O., Scharer, J. M., and Moo-Young, M. (2003), Appl. Microbiol. Biotechnol. 60, 403–407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. H. Junker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junker, B.H., Hesse, M., Burgess, B. et al. Early phase process scale-up challenges for fungal and filamentous bacterial cultures. Appl Biochem Biotechnol 119, 241–277 (2004). https://doi.org/10.1007/s12010-004-0005-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-004-0005-x

Index Entries

Navigation