Skip to main content
Log in

Strategies for Enhancing Laccase Yield from Streptomyces psammoticus and Its Role in Mediator-based Decolorization of Azo Dyes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Enhanced production of laccases from Streptomyces psammoticus in solid-state fermentation was carried out using two different strategies: laccase inducers and scale-up process. Laccase yield was enhanced by a wide range of aromatic inducers. The best inducer was pyrogallol, which yielded 116 U/g as compared to the control (55.4 U/g). Scale-up studies in packed bed bioreactor was performed at different aeration rates. Aeration at 1.5 vvm was identified as the optimum condition for laccase production (75.4 U/g) in the column bioreactor. The enzyme yield was enhanced further by combining the best conditions from the first two experiments. Fermentation was carried out in bioreactors in the presence of 1 mM pyrogallol, which resulted in 3.9-fold increase in laccase yield (215.6 U/g). The role of laccase in azo dye decolorization was evaluated in the presence of four different laccase mediators, at different concentrations. 1-Hydroxybenzotriazole (HOBT) proved to be the best mediator for S. psammoticus laccase and decolorized the azo dyes efficiently. Acid orange, Methyl orange, and Bismarck brown were decolorized at the rates of 86%, 71%, and 75% respectively, by HOBT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Piontek, K., Antorini, M., & Choinowski, T. (2002). Journal of Biological Chemistry, 277, 37663–37669.

    Article  CAS  Google Scholar 

  2. Arias, M. E., Arenas, M., Rodriguez, J., Soliveri, J., Ball, A. S., & Hernandez, M. (2003). Applied and Environmental Microbiology, 69, 1953–1958.

    Article  CAS  Google Scholar 

  3. Minussi, R. C., Pastore, G. M., & Durany, N. (2002). Trends in Food Science and Technology, 13, 205–216.

    Article  CAS  Google Scholar 

  4. Abadulla, E., Tzanov, T., Costa, S., Robra, K., Cavaco-Paulo, A., & Guebitz, G. M. (2000). Applied and Environmental Microbiology, 66, 3357–3362.

    Article  CAS  Google Scholar 

  5. Mayer, A. M., & Staples, R. C. (2002). Phytochemistry, 60, 551–565.

    Article  CAS  Google Scholar 

  6. Soares, G. M. B., Amorim, M. T. P., Hrdina, R., & Costa-Ferreira, M. (2002). Process Biochemistry, 37, 581–587.

    Article  CAS  Google Scholar 

  7. Call, H. P., & Mucke, I. (1997). Journal of Biotechnology, 53, 163–202.

    Article  CAS  Google Scholar 

  8. Bourbonnais, R., & Paice, M. G. (1990). Applied Microbiology and Biotechnology, 36, 823–827.

    Google Scholar 

  9. Claus, H., Faber, G., & Konig, H. (2002). Applied Microbiology and Biotechnology, 59, 672–678.

    Article  CAS  Google Scholar 

  10. Leonowicz, A., Cho, N. S., Luterek, J., Wilkolazka, A., Wotjas-Wasilewska, M., Matuszewska, A., et al. (2001). Journal of Basic Microbiology, 41, 185–227.

    Article  CAS  Google Scholar 

  11. De Souza, C. G. M., Tychanowicz, G. K., De Souza, D. F., & Peralta, R. M. (2004). Journal of Basic Microbiology, 44, 129–136.

    Article  Google Scholar 

  12. Revankar, M. S., & Lele, S. S. (2006). Process Biochemistry, 41, 581–588.

    Article  CAS  Google Scholar 

  13. Tunga, R., Banerjee, R., & Bhattacharyya, B. C. (1999). Bioprocess Engineering, 21, 107–112.

    Article  CAS  Google Scholar 

  14. Pandey, A., Soccol, C. R., Rodriguez-Leon, J., & Nigam, P. (Eds.) (2001). . New Delhi, India: Asiatech.

  15. Meza, J. C., Lomascolo, A., Casalot, L., Sigoillot, J., & Auria, R. (2005). Process Biochemistry, 40, 3365–3371.

    Article  CAS  Google Scholar 

  16. Niladevi, K. N., & Prema, P. (2005). Actinomycetologica, 19, 40–47.

    Article  CAS  Google Scholar 

  17. Niladevi, K. N., Sukumaran, R. K., & Prema, P. (2007). Journal of Industrial Microbiology and Biotechnology, 34, 665–674.

    Article  CAS  Google Scholar 

  18. Sakurai, Y., Lee, T. H., & Shiota, H. (1977). Agricultural and Biological Chemistry, 41, 619–624.

    CAS  Google Scholar 

  19. Ashley, V. M., Mitchell, D. A., & Howes, T. (1999). Biochemical Engineering Journal, 3, 141–150.

    Article  CAS  Google Scholar 

  20. Trilli, A. (1986). In Industrial Microbiology and Biotechnology. In A. L. Demain, & N. A. Solomon (Eds.) (pp. 227–307). Washington, DC: American Society of Microbiology.

  21. Lonsane, B. K., Castenada, S. G., Raimbault, M., Roussos, S., Gonzalez, V. G., Ghildyal, N. P., et al. (1992). Process Biochemistry, 27, 259–73.

    Article  CAS  Google Scholar 

  22. Chivukula, M., & Renganathan, V. (1995). Applied and Environmental Microbiology, 61, 4374–4377.

    CAS  Google Scholar 

  23. Nyanhongo, G. S., Gomes, J., Guebitz, G. M., Zvauya, R., Read, J., & Steiner, W. (2002). Water Research, 36, 1449–1456.

    Article  CAS  Google Scholar 

  24. Rodrıguez Couto, S., Sanroman, M., & Guebitz, G. M. (2005). Chemosphere, 58, 417–422.

    Article  Google Scholar 

  25. Solis-Oba, M., Ugalde-Saldıvar, V. M., Gonzalez, I., & Viniegra-Gonzalez, G. (2005). Journal of Electroanalytical Chemistry, 579, 59–66.

    Article  CAS  Google Scholar 

  26. Bourbonnais, R., Leech, D., & Paice, M. G. (1998). Biochim Biophys Acta, 1379, 381–390.

    CAS  Google Scholar 

  27. Potthast, A., Rosenau, T., Kosma, P., & Fischer, K. (1999). In Proceedings of the 10th International Symposium on Wood and Pulping Chemistry, vol. 1, Yokohama, Japan, pp. 596–601.

  28. Zille, A., Munteanu, F., Guebitz, G. M., & Cavaco-Paulo, A. (2005). Journal of Molecular Catalysis B, Enzymatic, 33, 23–28.

    Article  CAS  Google Scholar 

  29. Almansa, E., Kandelbauera, A., Pereira, L., Cavaco-paulo, A., & Guebitz, G. M. (2004). Biocatalysis and Biotransformation, 22, 315–324.

    Article  CAS  Google Scholar 

  30. Pasti-Grigsby, M. B., Paszczynski, A., Goszczynski, S., Crawford, D. L., & Crawford, R. L. (1992). Applied and Environmental Microbiology, 58, 3605–3613.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Council of Scientific and Industrial Research, Government of India, for the Research Fellowship given to K.N. Niladevi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Prema.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niladevi, K.N., Sheejadevi, P.S. & Prema, P. Strategies for Enhancing Laccase Yield from Streptomyces psammoticus and Its Role in Mediator-based Decolorization of Azo Dyes. Appl Biochem Biotechnol 151, 9–19 (2008). https://doi.org/10.1007/s12010-008-8175-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8175-6

Keywords

Navigation