Skip to main content
Log in

Model-Based Fed-Batch for High-Solids Enzymatic Cellulose Hydrolysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

While many kinetic models have been developed for the enzymatic hydrolysis of cellulose, few have been extensively applied for process design, optimization, or control. High-solids operation of the enzymatic hydrolysis of lignocellulose is motivated by both its operation decreasing capital costs and increasing product concentration and hence separation costs. This work utilizes both insights obtained from experimental work and kinetic modeling to develop an optimization strategy for cellulose saccharification at insoluble solids levels greater than 15% (w/w), where mixing in stirred tank reactors (STRs) becomes problematic. A previously developed model for batch enzymatic hydrolysis of cellulose was modified to consider the effects of feeding in the context of fed-batch operation. By solving the set of model differential equations, a feeding profile was developed to maintain the insoluble solids concentration at a constant or manageable level throughout the course of the reaction. Using this approach, a stream of relatively concentrated solids (and cellulase enzymes) can be used to increase the final sugar concentration within the reactor without requiring the high initial levels of insoluble solids that would be required if the operation were performed in batch mode. Experimental application in bench-scale STRs using a feed stream of dilute acid-pretreated corn stover solids and cellulase enzymes resulted in similar cellulose conversion profiles to those achieved in batch shake-flask reactors where temperature control issues are mitigated. Final cellulose conversions reached approximately 80% of theoretical for fed-batch STRs fed to reach a cumulative solids level of 25% (w/w) initial insoluble solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sheehan, J., & Himmel, M. (1999). Biotechnology Progress, 15, 817–827.

    Article  CAS  Google Scholar 

  2. Schell, D. J., Farmer, J., Newman, M., & McMillan, J. D. (2003). Applied Biochemistry and Biotechnology, 105–108, 69–85.

    Article  Google Scholar 

  3. Calsavara, L. P., De Moraes, F. F., & Zanin, G. M. (1999). Applied Biochemistry and Biotechnology, 77–79, 789–806.

    Article  Google Scholar 

  4. Chang, V. S., & Holtzapple, M. T. (2000). Applied Biochemistry and Biotechnology, 84–86, 5–37.

    Article  Google Scholar 

  5. Converse, A. O., Ooshima, H., & Burns, D. S. (1990). Applied Biochemistry and Biotechnology, 24–25, 67–73.

    Article  Google Scholar 

  6. Kadam, K. L., Rydholm, E. C., & McMillan, J. D. (2004). Biotechnology Progress, 20, 698–705.

    Article  CAS  Google Scholar 

  7. Philippidis, G. P., & Hatzis, C. (1997). Biotechnology Progress, 13, 222–231.

    Article  CAS  Google Scholar 

  8. Schell, D. J., Ruth, M., & Tucker, M. (1999). Applied Biochemistry and Biotechnology, 77–79, 67–81.

    Article  Google Scholar 

  9. Mohagheghi, A., Tucker, M., Grohmann, K., & Wyman, C. (1992). Applied Biochemistry and Biotechnology, 33, 67–81.

    Article  CAS  Google Scholar 

  10. Wingren, A., Galbe, M., & Zacchi, G. (2003). Biotechnology Progress, 19, 1109–1117.

    Article  CAS  Google Scholar 

  11. Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neefes, K., Sheehan, J., et al. (2002). NREL Technical Paper 510–32438, Golden, Colorado, USA.

  12. Mandels, M., & Reese, E. T. (1965). Annual Review of Phytopathology, 3, 85–102.

    Article  CAS  Google Scholar 

  13. Pimenova, N. V., & Hanley, T. R. (2003). Applied Biochemistry and Biotechnology, 105–108, 383–392.

    Article  Google Scholar 

  14. Xiao, Z., Zhang, X., Gregg, D. J., & Saddler, J. N. (2004). Applied Biochemistry and Biotechnology, 115, 1115–1126.

    Article  Google Scholar 

  15. Boer, H., & Koivula, A. (2003). European Journal of Biochemistry, 270, 841–848.

    Article  CAS  Google Scholar 

  16. Alizadeh, H., Teymouri, F., Gilbert, T. I., & Dale, B. E. (2005). Applied Biochemistry and Biotechnology, 121–124, 1133–1141.

    Article  Google Scholar 

  17. Zhu, Y., Lee, Y. Y., & Elander, R. T. (2004). Applied Biochemistry and Biotechnology, 117, 103–114.

    Article  CAS  Google Scholar 

  18. De Bari, I., Viola, E., Barisano, D., Cardinale, M., Nanna, F., Zimbardi, F., et al. (2002). Industrial & Engineering Chemistry Research, 41, 1745–1753.

    Article  CAS  Google Scholar 

  19. Varga, E., Klinke, H. B., Réczey, K., & Thomsen, A. B. (2004). Biotechnology and Bioengineering, 88, 567–574.

    Article  CAS  Google Scholar 

  20. Jørgensen, H., Vibe-Pedersen, J., Larsen, J., & Felby, C. (2007). Biotechnology and Bioengineering, 96, 862–870.

    Article  CAS  Google Scholar 

  21. Ballesteros, I., Oliva, J. M., Negro, M. J., Manzanares, P., & Ballesteros, M. (2002). Applied Biochemistry and Biotechnology, 98–100, 717–732.

    Article  Google Scholar 

  22. Tengborg, C., Galbe, M., & Zacchi, G. (2001). Enzyme and Microbial Technology, 28, 835–844.

    Article  CAS  Google Scholar 

  23. Fan, Z., South, C., Lyford, K., Munsie, J., van Walsum, P., & Lynd, L. R. (2003). Bioprocess and Biosystems Engineering, 26, 93–101.

    Article  CAS  Google Scholar 

  24. Pristavka, A. A., Salovarova, V. P., Zacchi, Z., Berezin, I. V., & Rabinovich, M. L. (2000). Prikladnaa biohimia i mikrobiologia, 36, 278–86.

    CAS  Google Scholar 

  25. Söderström, J., Galbe, M., & Zacchi, G. (2004). Biotechnolgy Progress, 20, 744–749.

    Article  CAS  Google Scholar 

  26. Borden, J. R., Lee, Y. Y., & Yoon, H. H. (2000). Applied Biochemistry and Biotechnology, 84–86, 963–970.

    Article  Google Scholar 

  27. Kleman, G. L., Chalmers, J. J., Luli, G. W., & Strohl, W. R. (1991). Applied and Environmental Microbiology, 57, 910–917.

    CAS  Google Scholar 

  28. Rudolf, A., Galbe, M., & Liden, G. (2004). Applied Biochemistry and Biotechnology, 113–116, 601–617.

    Article  Google Scholar 

  29. Taherzadeh, M. J., Niklasson, C., & Liden, G. (2000). Biotechnology and Bioengineering, 69, 330–338.

    Article  CAS  Google Scholar 

  30. Nilsson, A., Taherzadeh, M. J., & Liden, G. (2002). Bioprocess and Biosystems Engineering, 25, 183–191.

    Article  CAS  Google Scholar 

  31. Hodge, D. B., & Karim, M. N. (2002). Biotechnology Progress, 18, 572–579.

    Article  CAS  Google Scholar 

  32. Lee, J. H., Lim, H. C., Yoo, Y. J., & Park, Y. H. (1999). Bioprocess Engineering, 20, 137–146.

    Article  CAS  Google Scholar 

  33. Hong, J. (1986). Biotechnology and Bioengineering, 28, 1421–1431.

    Article  CAS  Google Scholar 

  34. Modak, J. M., Lim, H. C., & Tayeb, Y. J. (1986). Biotechnology and Bioengineering, 28, 1396–1407.

    Article  CAS  Google Scholar 

  35. Chung, Y. C., Bakalinsky, A., & Penner, M. H. (1997). Applied Biochemistry and Biotechnology, 66, 249–262.

    Article  CAS  Google Scholar 

  36. Weast, R. C. (1985). CRC handbook of chemistry and physics, (66th ed.). Boca Raton: CRC.

    Google Scholar 

  37. Gamkrelidze, R. V. (1978). Principles of optimal control theory. New York: Plenum.

    Google Scholar 

  38. Palonen, H., Tjerneld, F., Zacchi, G., & Tenkanen, M. (2004). Journal of Biotechnology, 107, 65–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The US Department of Energy (DOE) supported this work through the Office of the Biomass Programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Hodge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodge, D.B., Karim, M.N., Schell, D.J. et al. Model-Based Fed-Batch for High-Solids Enzymatic Cellulose Hydrolysis. Appl Biochem Biotechnol 152, 88–107 (2009). https://doi.org/10.1007/s12010-008-8217-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8217-0

Keywords

Navigation