Skip to main content
Log in

Mechanisms of Dealing with DNA Damage-Induced Replication Problems

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

During every S phase, cells need to duplicate their genomes so that both daughter cells inherit complete copies of genetic information. Given the large size of mammalian genomes and the required precision of DNA replication, genome duplication requires highly fine-tuned corrective and quality control processes. A major threat to the accuracy and efficiency of DNA synthesis is the presence of DNA lesions, caused by both endogenous and exogenous damaging agents. Replicative DNA polymerases, which carry out the bulk of DNA synthesis, evolved to do their job extremely precisely and efficiently. However, they are unable to use damaged DNA as a template and, consequently, are stopped at most DNA lesions. Failure to restart such stalled replication forks can result in major chromosomal aberrations and lead to cell dysfunction or death. Therefore, a well-coordinated response to replication perturbation is essential for cell survival and fitness. Here we review how this response involves activating checkpoint signaling and the use of specialized pathways promoting replication restart. Checkpoint signaling adjusts cell cycle progression to the emergency situation and thus gives cells more time to deal with the damage. Replication restart is mediated by two pathways. Homologous recombination uses homologous DNA sequence to repair or bypass the lesion and is therefore mainly error free. Error-prone translesion synthesis employs specialized, low fidelity polymerases to bypass the damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hoeijmakers, J. H. (2001). Genome maintenance mechanisms for preventing cancer. Nature, 411, 366–374.

    PubMed  CAS  Google Scholar 

  2. Zhou, B. B., & Elledge, S. J. (2000). The DNA damage response: Putting checkpoints in perspective. Nature, 408, 433–439.

    PubMed  CAS  Google Scholar 

  3. Bartek, J., & Lukas, J. (2001). Pathways governing G1/S transition and their response to DNA damage. FEBS Letters, 490, 117–122.

    PubMed  CAS  Google Scholar 

  4. Schuler, M., & Green, D. R. (2001). Mechanisms of p53-dependent apoptosis. Biochemical Society Transactions, 29, 684–688.

    PubMed  CAS  Google Scholar 

  5. Branzei, D., & Foiani, M. (2007). Molecular genetics of recombination. In A. Aguilera & R. Rothstein (Eds.), Topics curr genet (pp. 201–219). Germany: Springer Verlag.

    Google Scholar 

  6. Niedernhofer, L. J., Odijk, H., Budzowska, M., van Drunen, E., Maas, A., Theil, A. F., et al. (2004). The structure-specific endonuclease Ercc1-Xpf is required to resolve DNA interstrand cross-link-induced double-strand breaks. Molecular and Cellular Biology, 24, 5776–5787.

    PubMed  CAS  Google Scholar 

  7. Hanada, K., Budzowska, M., Davies, S. L., van Drunen, E., Onizawa, H., Beverloo, H. B., et al. (2007). The structure-specific endonuclease Mus81 contributes to replication restart by generating double-strand DNA breaks. Nature Structural & Molecular Biology, 14, 1096–1104.

    CAS  Google Scholar 

  8. Abraham, R. T. (2001). Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes and Development, 15, 2177–2196.

    PubMed  CAS  Google Scholar 

  9. Liu, Q., Guntuku, S., Cui, X. S., Matsuoka, S., Cortez, D., Tamai, K., et al. (2000). Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes and Development, 14, 1448–1459.

    PubMed  CAS  Google Scholar 

  10. Brown, E. J., & Baltimore, D. (2000). ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes and Development, 14, 397–402.

    PubMed  CAS  Google Scholar 

  11. Budzowska, M., Jaspers, I., Essers, J., de Waard, H., van Drunen, E., Hanada, K., et al. (2004). Mutation of the mouse Rad17 gene leads to embryonic lethality and reveals a role in DNA damage-dependent recombination. EMBO Journal, 23, 3548–3558.

    PubMed  CAS  Google Scholar 

  12. de Klein, A., Muijtjens, M., van Os, R., Verhoeven, Y., Smit, B., Carr, A. M., et al. (2000). Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Current Biology, 10, 479–482.

    PubMed  Google Scholar 

  13. Zou, L., & Elledge, S. J. (2003). Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science, 300, 1542–1548.

    PubMed  CAS  Google Scholar 

  14. St Onge, R. P., Udell, C. M., Casselman, R., & Davey, S. (1999). The human G2 checkpoint control protein hRAD9 is a nuclear phosphoprotein that forms complexes with hRAD1 and hHUS1. Molecular Biology of the Cell, 10, 1985–1995.

    PubMed  CAS  Google Scholar 

  15. Burtelow, M. A., Roos-Mattjus, P. M., Rauen, M., Babendure, J. R., & Karnitz, L. M. (2001). Reconstitution and molecular analysis of the hRad9-hHus1-hRad1 (9-1-1) DNA damage responsive checkpoint complex. Journal of Biological Chemistry, 276, 25903–25909.

    PubMed  CAS  Google Scholar 

  16. Singh, V. K., Nurmohamed, S., Davey, S. K., & Jia, Z. (2007). Tri-cistronic cloning, overexpression and purification of human Rad9, Rad1, Hus1 protein complex. Protein Expression and Purification, 54, 204–211.

    PubMed  CAS  Google Scholar 

  17. Venclovas, C., & Thelen, M. P. (2000). Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes. Nucleic Acids Research, 28, 2481–2493.

    PubMed  CAS  Google Scholar 

  18. Kondo, T., Matsumoto, K., & Sugimoto, K. (1999). Role of a complex containing Rad17, Mec3, and Ddc1 in the yeast DNA damage checkpoint pathway. Molecular and Cellular Biology, 19, 1136–1143.

    PubMed  CAS  Google Scholar 

  19. Zou, L., Cortez, D., & Elledge, S. J. (2002). Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes and Development, 16, 198–208.

    PubMed  CAS  Google Scholar 

  20. Kondo, T., Wakayama, T., Naiki, T., Matsumoto, K., & Sugimoto, K. (2001). Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science, 294, 867–870.

    PubMed  CAS  Google Scholar 

  21. Majka, J., & Burgers, P. M. (2004). The PCNA-RFC families of DNA clamps and clamp loaders. Progress in Nucleic Acid Research and Molecular Biology, 78, 227–260.

    PubMed  CAS  Google Scholar 

  22. Bermudez, V. P., Lindsey-Boltz, L. A., Cesare, A. J., Maniwa, Y., Griffith, J. D., Hurwitz, J., et al. (2003). Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRad17-replication factor C complex in vitro. Proceedings of the National Academy of Sciences of the United States of America, 100, 1633–1638.

    PubMed  CAS  Google Scholar 

  23. Kumagai, A., Lee, J., Yoo, H. Y., & Dunphy, W. G. (2006). TopBP1 activates the ATR-ATRIP complex. Cell, 124, 943–955.

    PubMed  CAS  Google Scholar 

  24. Zhao, H., & Piwnica-Worms, H. (2001). ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Molecular and Cellular Biology, 21, 4129–4139.

    PubMed  CAS  Google Scholar 

  25. Capasso, H., Palermo, C., Wan, S., Rao, H., John, U. P., O’Connell, M. J., et al. (2002). Phosphorylation activates Chk1 and is required for checkpoint-mediated cell cycle arrest. Journal of Cell Science, 115, 4555–4564.

    PubMed  CAS  Google Scholar 

  26. Chen, P., Luo, C., Deng, Y., Ryan, K., Register, J., Margosiak, S., et al. (2000). The 1.7 A crystal structure of human cell cycle checkpoint kinase Chk1: Implications for Chk1 regulation. Cell, 100, 681–692.

    PubMed  CAS  Google Scholar 

  27. Oe, T., Nakajo, N., Katsuragi, Y., Okazaki, K., & Sagata, N. (2001). Cytoplasmic occurrence of the Chk1/Cdc25 pathway and regulation of Chk1 in Xenopus oocytes. Developmental Biology, 229, 250–261.

    PubMed  CAS  Google Scholar 

  28. Smits, V. A., Reaper, P. M., & Jackson, S. P. (2006). Rapid PIKK-dependent release of Chk1 from chromatin promotes the DNA-damage checkpoint response. Current Biology, 16, 150–159.

    PubMed  CAS  Google Scholar 

  29. Dronkert, M. L., & Kanaar, R. (2001). Repair of DNA interstrand cross-links. Mutation Research, 486, 217–247.

    PubMed  CAS  Google Scholar 

  30. Cox, M. M., Goodman, M. F., Kreuzer, K. N., Sherratt, D. J., Sandler, S. J., & Marians, K. J. (2000). The importance of repairing stalled replication forks. Nature, 404, 37–41.

    PubMed  CAS  Google Scholar 

  31. Kostriken, R., Strathern, J. N., Klar, A. J., Hicks, J. B., & Heffron, F. (1983). A site-specific endonuclease essential for mating-type switching in Saccharomyces cerevisiae. Cell, 35, 167–174.

    PubMed  CAS  Google Scholar 

  32. Keeney, S., & Neale, M. J. (2006). Initiation of meiotic recombination by formation of DNA double-strand breaks: Mechanism and regulation. Biochemical Society Transactions, 34, 523–525.

    PubMed  CAS  Google Scholar 

  33. Deans, B., Griffin, C. S., Maconochie, M., & Thacker, J. (2000). Xrcc2 is required for genetic stability, embryonic neurogenesis and viability in mice. EMBO Journal, 19, 6675–6685.

    PubMed  CAS  Google Scholar 

  34. Smiraldo, P. G., Gruver, A. M., Osborn, J. C., & Pittman, D. L. (2005). Extensive chromosomal instability in Rad51d-deficient mouse cells. Cancer Research, 65, 2089–2096.

    PubMed  CAS  Google Scholar 

  35. Lim, D. S., & Hasty, P. (1996). A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Molecular and Cellular Biology, 16, 7133–7143.

    PubMed  CAS  Google Scholar 

  36. Tsuzuki, T., Fujii, Y., Sakumi, K., Tominaga, Y., Nakao, K., Sekiguchi, M., et al. (1996). Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proceedings of the National Academy of Sciences of the United States of America, 93, 6236–6240.

    PubMed  CAS  Google Scholar 

  37. Hanada, K., & Hickson, I. D. (2007). Molecular genetics of RecQ helicase disorders. Cellular and Molecular Life Sciences, 64, 2306–2322.

    PubMed  CAS  Google Scholar 

  38. Pellegrini, L., & Venkitaraman, A. (2004). Emerging functions of BRCA2 in DNA recombination. Trends in Biochemical Sciences, 29, 310–316.

    PubMed  CAS  Google Scholar 

  39. Lee, S. E., Moore, J. K., Holmes, A., Umezu, K., Kolodner, R. D., & Haber, J. E. (1998). Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell, 94, 399–409.

    PubMed  CAS  Google Scholar 

  40. Tauchi, H., Kobayashi, J., Morishima, K., van Gent, D. C., Shiraishi, T., Verkaik, N. S., et al. (2002). Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells. Nature, 420, 93–98.

    PubMed  CAS  Google Scholar 

  41. Limbo, O., Chahwan, C., Yamada, Y., de Bruin, R. A., Wittenberg, C., & Russell, P. (2007). Ctp1 is a cell-cycle-regulated protein that functions with Mre11 complex to control double-strand break repair by homologous recombination. Molecular Cell, 28, 134–146.

    PubMed  CAS  Google Scholar 

  42. Sartori, A. A., Lukas, C., Coates, J., Mistrik, M., Fu, S., Bartek, J., et al. (2007). Human CtIP promotes DNA end resection. Nature, 450, 509–514.

    PubMed  CAS  Google Scholar 

  43. Lusetti, S. L., & Cox, M. M. (2002). The bacterial RecA protein and the recombinational DNA repair of stalled replication forks. Annual Review of Biochemistry, 71, 71–100.

    PubMed  CAS  Google Scholar 

  44. Kowalczykowski, S. C., & Krupp, R. A. (1995). DNA-strand exchange promoted by RecA protein in the absence of ATP: implications for the mechanism of energy transduction in protein-promoted nucleic acid transactions. Proceedings of the National Academy of Sciences of the United States of America, 92, 3478–3482.

    PubMed  CAS  Google Scholar 

  45. Sung, P., & Stratton, S. A. (1996). Yeast Rad51 recombinase mediates polar DNA strand exchange in the absence of ATP hydrolysis. Journal of Biological Chemistry, 271, 27983–27986.

    PubMed  CAS  Google Scholar 

  46. Chi, P., Van Komen, S., Sehorn, M. G., Sigurdsson, S., & Sung, P. (2006). Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function. DNA Repair, 5, 381–391.

    PubMed  CAS  Google Scholar 

  47. Conway, A. B., Lynch, T. W., Zhang, Y., Fortin, G. S., Fung, C. W., Symington, L. S., et al. (2004). Crystal structure of a Rad51 filament. Nature Structural & Molecular Biology, 11, 791–796.

    CAS  Google Scholar 

  48. Brendel, V., Brocchieri, L., Sandler, S. J., Clark, A. J., & Karlin, S. (1997). Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms. Journal of Molecular Evolution, 44, 528–541.

    PubMed  CAS  Google Scholar 

  49. Benson, F. E., Stasiak, A., & West, S. C. (1994). Purification and characterization of the human Rad51 protein, an analogue of E. coli RecA. EMBO Journal, 13, 5764–5771.

    PubMed  CAS  Google Scholar 

  50. Mameren, J., Modesti, M., Kanaar, R., Wyman, C., Wuite, G. J., & Peterman, E. J. (2006). Dissecting elastic heterogeneity along DNA molecules coated partly with Rad51 using concurrent fluorescence microscopy and optical tweezers. Biophysical Journal, 91, L78–L80.

    PubMed  Google Scholar 

  51. Modesti, M., Ristic, D., van der Heijden, T., Dekker, C., van Mameren, J., Peterman, E. J., et al. (2007). Fluorescent human RAD51 reveals multiple nucleation sites and filament segments tightly associated along a single DNA molecule. Structure, 15, 599–609.

    PubMed  CAS  Google Scholar 

  52. Shan, Q., & Cox, M. M. (1997). RecA filament dynamics during DNA strand exchange reactions. Journal of Biological Chemistry, 272, 11063–11073.

    PubMed  CAS  Google Scholar 

  53. Shan, Q., & Cox, M. M. (1996). RecA protein dynamics in the interior of RecA nucleoprotein filaments. Journal of Molecular Biology, 257, 756–774.

    PubMed  CAS  Google Scholar 

  54. Solinger, J. A., Kiianitsa, K., & Heyer, W. D. (2002). Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Molecular Cell, 10, 1175–1188.

    PubMed  CAS  Google Scholar 

  55. Sugawara, N., Wang, X., & Haber, J. E. (2003). In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Molecular Cell, 12, 209–219.

    PubMed  CAS  Google Scholar 

  56. Wittschieben, J. P., Reshmi, S. C., Gollin, S. M., & Wood, R. D. (2006). Loss of DNA polymerase zeta causes chromosomal instability in mammalian cells. Cancer Research, 66, 134–142.

    PubMed  CAS  Google Scholar 

  57. Okada, T., Sonoda, E., Yoshimura, M., Kawano, Y., Saya, H., Kohzaki, M., et al. (2005). Multiple roles of vertebrate REV genes in DNA repair and recombination. Molecular and Cellular Biology, 25, 6103–6111.

    PubMed  CAS  Google Scholar 

  58. Paques, F., & Haber, J. E. (1999). Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 63, 349–404.

    PubMed  CAS  Google Scholar 

  59. Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J., & Stahl, F. W. (1983). The double-strand-break repair model for recombination. Cell, 33, 25–35.

    PubMed  CAS  Google Scholar 

  60. West, S. C. (1997). Processing of recombination intermediates by the RuvABC proteins. Annual Review of Genetics, 31, 213–244.

    PubMed  CAS  Google Scholar 

  61. Constantinou, A., Davies, A. A., & West, S. C. (2001). Branch migration and Holliday junction resolution catalyzed by activities from mammalian cells. Cell, 104, 259–268.

    PubMed  CAS  Google Scholar 

  62. Wu, L., & Hickson, I. D. (2003). The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature, 426, 870–874.

    PubMed  CAS  Google Scholar 

  63. Wyman, C., & Kanaar, R. (2006). DNA double-strand break repair: All’s well that ends well. Annual Review of Genetics, 40, 363–383.

    PubMed  CAS  Google Scholar 

  64. Sugiyama, T., Zaitseva, E. M., & Kowalczykowski, S. C. (1997). A single-stranded DNA-binding protein is needed for efficient presynaptic complex formation by the Saccharomyces cerevisiae Rad51 protein. Journal of Biological Chemistry, 272, 7940–7945.

    PubMed  CAS  Google Scholar 

  65. Esashi, F., Galkin, V. E., Yu, X., Egelman, E. H., & West, S. C. (2007). Stabilization of RAD51 nucleoprotein filaments by the C-terminal region of BRCA2. Nature Structural & Molecular Biology, 14, 468–474.

    CAS  Google Scholar 

  66. Modesti, M., Budzowska, M., Baldeyron, C., Demmers, J. A., Ghirlando, R., & Kanaar, R. (2007). RAD51AP1 is a structure-specific DNA binding protein that stimulates joint molecule formation during RAD51-mediated homologous recombination. Molecular Cell, 28, 468–481.

    PubMed  CAS  Google Scholar 

  67. Wiese, C., Dray, E., Groesser, T., San Filippo, J., Shi, I., Collins, D. W., et al. (2007). Promotion of homologous recombination and genomic stability by RAD51AP1 via RAD51 recombinase enhancement. Molecular Cell, 28, 482–490.

    PubMed  CAS  Google Scholar 

  68. Bugreev, D. V., Hanaoka, F., & Mazin, A. V. (2007). Rad54 dissociates homologous recombination intermediates by branch migration. Nature Structural & Molecular Biology, 14, 746–753.

    CAS  Google Scholar 

  69. Heller, R. C., & Marians, K. J. (2006). Replication fork reactivation downstream of a blocked nascent leading strand. Nature, 439, 557–562.

    PubMed  CAS  Google Scholar 

  70. Seigneur, M., Bidnenko, V., Ehrlich, S. D., & Michel, B. (1998). RuvAB acts at arrested replication forks. Cell, 95, 419–430.

    PubMed  CAS  Google Scholar 

  71. Hanada, K., Budzowska, M., Modesti, M., Maas, A., Wyman, C., Essers, J., et al. (2006). The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks. EMBO Journal, 25, 4921–4932.

    PubMed  CAS  Google Scholar 

  72. Pages, V., & Fuchs, R. P. (2002). How DNA lesions are turned into mutations within cells? Oncogene, 21, 8957–8966.

    PubMed  CAS  Google Scholar 

  73. Lehmann, A. R. (2002). Replication of damaged DNA in mammalian cells: New solutions to an old problem. Mutation Research, 509, 23–34.

    PubMed  CAS  Google Scholar 

  74. Yang, W. (2003). Damage repair DNA polymerases Y. Current Opinion in Structural Biology, 13, 23–30.

    PubMed  CAS  Google Scholar 

  75. Kunkel, T. A., Pavlov, Y. I., & Bebenek, K. (2003). Functions of human DNA polymerases eta, kappa and iota suggested by their properties, including fidelity with undamaged DNA templates. DNA Repair, 2, 135–149.

    PubMed  CAS  Google Scholar 

  76. Lawrence, C. (1994). The RAD6 DNA repair pathway in Saccharomyces cerevisiae: What does it do, and how does it do it? Bioessays, 16, 253–258.

    PubMed  CAS  Google Scholar 

  77. Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G., & Jentsch, S. (2002). RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature, 419, 135–141.

    PubMed  CAS  Google Scholar 

  78. Ulrich, H. D., & Jentsch, S. (2000). Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO Journal, 19, 3388–3397.

    PubMed  CAS  Google Scholar 

  79. Hofmann, R. M., & Pickart, C. M. (1999). Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell, 96, 645–653.

    PubMed  CAS  Google Scholar 

  80. Stelter, P., & Ulrich, H. D. (2003). Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature, 425, 188–191.

    PubMed  CAS  Google Scholar 

  81. Bienko, M., Green, C. M., Crosetto, N., Rudolf, F., Zapart, G., Coull, B., et al. (2005). Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science, 310, 1821–1824.

    PubMed  CAS  Google Scholar 

  82. Kannouche, P. L., Wing, J., & Lehmann, A. R. (2004). Interaction of human DNA polymerase eta with monoubiquitinated PCNA: A possible mechanism for the polymerase switch in response to DNA damage. Molecular Cell, 14, 491–500.

    PubMed  CAS  Google Scholar 

  83. Watanabe, K., Tateishi, S., Kawasuji, M., Tsurimoto, T., Inoue, H., & Yamaizumi, M. (2004). Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO Journal, 23, 3886–3896.

    PubMed  CAS  Google Scholar 

  84. Kannouche, P., Fernandez de Henestrosa, A. R., Coull, B., Vidal, A. E., Gray, C., Zicha, D., et al. (2003). Localization of DNA polymerases eta and iota to the replication machinery is tightly co-ordinated in human cells. EMBO Journal, 22, 1223–1233.

    PubMed  CAS  Google Scholar 

  85. Bi, X., Barkley, L. R., Slater, D. M., Tateishi, S., Yamaizumi, M., Ohmori, H., et al. (2006). Rad18 regulates DNA polymerase kappa and is required for recovery from S-phase checkpoint-mediated arrest. Molecular and Cellular Biology, 26, 3527–3540.

    PubMed  CAS  Google Scholar 

  86. Huang, T. T., Nijman, S. M., Mirchandani, K. D., Galardy, P. J., Cohn, M. A., Haas, W., et al. (2006). Regulation of monoubiquitinated PCNA by DUB autocleavage. Nature Cell Biology, 8, 339–347.

    PubMed  CAS  Google Scholar 

  87. Frampton, J., Irmisch, A., Green, C. M., Neiss, A., Trickey, M., Ulrich, H. D., et al. (2006). Postreplication repair and PCNA modification in Schizosaccharomyces pombe. Molecular Biology of the Cell, 17, 2976–2985.

    PubMed  CAS  Google Scholar 

  88. Bailly, V., Lauder, S., Prakash, S., & Prakash, L. (1997). Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities. Journal of Biological Chemistry, 272, 23360–23365.

    PubMed  CAS  Google Scholar 

  89. Prakash, S., & Prakash, L. (2002). Translesion DNA synthesis in eukaryotes: A one- or two-polymerase affair. Genes and Development, 16, 1872–1883.

    PubMed  CAS  Google Scholar 

  90. Bridges, B. A., & Woodgate, R. (1985). The two-step model of bacterial UV mutagenesis. Mutation Research, 150, 133–139.

    PubMed  CAS  Google Scholar 

  91. Guo, C., Tang, T. S., Bienko, M., Parker, J. L., Bielen, A. B., Sonoda, E., et al. (2006). Ubiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damage. Molecular and Cellular Biology, 26, 8892–8900.

    PubMed  CAS  Google Scholar 

  92. Ohashi, E., Murakumo, Y., Kanjo, N., Akagi, J., Masutani, C., Hanaoka, F., et al. (2004). Interaction of hREV1 with three human Y-family DNA polymerases. Genes Cells, 9, 523–531.

    PubMed  CAS  Google Scholar 

  93. Guo, C., Fischhaber, P. L., Luk-Paszyc, M. J., Masuda, Y., Zhou, J., Kamiya, K., et al. (2003). Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. EMBO Journal, 22, 6621–6630.

    PubMed  CAS  Google Scholar 

  94. Tissier, A., Kannouche, P., Reck, M. P., Lehmann, A. R., Fuchs, R. P., & Cordonnier, A. (2004). Co-localization in replication foci and interaction of human Y-family members, DNA polymerase pol eta and REVl protein. DNA Repair, 3, 1503–1514.

    PubMed  CAS  Google Scholar 

  95. Masutani, C., Kusumoto, R., Iwai, S., & Hanaoka, F. (2000). Mechanisms of accurate translesion synthesis by human DNA polymerase eta. EMBO Journal, 19, 3100–3109.

    PubMed  CAS  Google Scholar 

  96. Chiu, R. K., Brun, J., Ramaekers, C., Theys, J., Weng, L., Lambin, P., et al. (2006). Lysine 63-polyubiquitination guards against translesion synthesis-induced mutations. PLoS Genetics, 2, e116.

    PubMed  Google Scholar 

  97. Langie, S. A., Knaapen, A. M., Ramaekers, C. H., Theys, J., Brun, J., Godschalk, R. W., et al. (2007). Formation of lysine 63-linked poly-ubiquitin chains protects human lung cells against benzo[a]pyrene-diol-epoxide-induced mutagenicity. DNA Repair, 6, 852–862.

    PubMed  CAS  Google Scholar 

  98. Courcelle, J., Khodursky, A., Peter, B., Brown, P. O., & Hanawalt, P. C. (2001). Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics, 158, 41–64.

    PubMed  CAS  Google Scholar 

  99. Sutton, M. D., & Walker, G. C. (2001). Managing DNA polymerases: Coordinating DNA replication, DNA repair, and DNA recombination. Proceedings of the National Academy of Sciences of the United States of America, 98, 8342–8349.

    PubMed  CAS  Google Scholar 

  100. Tang, M., Bruck, I., Eritja, R., Turner, J., Frank, E. G., Woodgate, R., et al. (1998). Biochemical basis of SOS-induced mutagenesis in Escherichia coli: Reconstitution of in vitro lesion bypass dependent on the UmuD’2C mutagenic complex and RecA protein. Proceedings of the National Academy of Sciences of the United States of America, 95, 9755–9760.

    PubMed  CAS  Google Scholar 

  101. Reuven, N. B., Arad, G., Maor-Shoshani, A., & Livneh, Z. (1999). The mutagenesis protein UmuC is a DNA polymerase activated by UmuD’, RecA, and SSB and is specialized for translesion replication. Journal of Biological Chemistry, 274, 31763–31766.

    PubMed  CAS  Google Scholar 

  102. Schlacher, K., Cox, M. M., Woodgate, R., & Goodman, M. F. (2006). RecA acts in trans to allow replication of damaged DNA by DNA polymerase V. Nature, 442, 883–887.

    PubMed  CAS  Google Scholar 

  103. Sommer, S., Bailone, A., & Devoret, R. (1993). The appearance of the UmuD’C protein complex in Escherichia coli switches repair from homologous recombination to SOS mutagenesis. Molecular Microbiology, 10, 963–971.

    PubMed  CAS  Google Scholar 

  104. Rehrauer, W. M., Bruck, I., Woodgate, R., Goodman, M. F., & Kowalczykowski, S. C. (1998). Modulation of RecA nucleoprotein function by the mutagenic UmuD’C protein complex. Journal of Biological Chemistry, 273, 32384–32387.

    PubMed  CAS  Google Scholar 

  105. Opperman, T., Murli, S., Smith, B. T., & Walker, G. C. (1999). A model for a umuDC-dependent prokaryotic DNA damage checkpoint. Proceedings of the National Academy of Sciences of the United States of America, 96, 9218–9223.

    PubMed  CAS  Google Scholar 

  106. Tanner, N. A., Hamdan, S. M., Jergic, S., Schaeffer, P. M., Dixon, N. E., & van Oijen, A. M. (2008). Single-molecule studies of fork dynamics in Escherichia coli DNA replication. Nature Structural & Molecular Biology, 15, 170–176.

    CAS  Google Scholar 

  107. Lukas, C., Falck, J., Bartkova, J., Bartek, J., & Lukas, J. (2003). Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nature Cell Biology, 5, 255–260.

    PubMed  CAS  Google Scholar 

  108. Yagi, Y., Ogawara, D., Iwai, S., Hanaoka, F., Akiyama, M., & Maki, H. (2005). DNA polymerases eta and kappa are responsible for error-free translesion DNA synthesis activity over a cis-syn thymine dimer in Xenopus laevis oocyte extracts. DNA Repair, 4, 1252–1269.

    PubMed  CAS  Google Scholar 

  109. Lehmann, A. R., Kirk-Bell, S., Arlett, C. F., Paterson, M. C., Lohman, P. H., de Weerd-Kastelein, E. A., et al. (1975). Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation. Proceedings of the National Academy of Sciences of the United States of America, 72, 219–223.

    PubMed  CAS  Google Scholar 

  110. Kannouche, P., Broughton, B. C., Volker, M., Hanaoka, F., Mullenders, L. H., & Lehmann, A. R. (2001). Domain structure, localization, and function of DNA polymerase eta, defective in xeroderma pigmentosum variant cells. Genes and Development, 15, 158–172.

    PubMed  CAS  Google Scholar 

  111. McIlwraith, M. J., Vaisman, A., Liu, Y., Fanning, E., Woodgate, R., & West, S. C. (2005). Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Molecular Cell, 20, 783–792.

    PubMed  CAS  Google Scholar 

  112. Kawamoto, T., Araki, K., Sonoda, E., Yamashita, Y. M., Harada, K., Kikuchi, K., et al. (2005). Dual roles for DNA polymerase eta in homologous DNA recombination and translesion DNA synthesis. Molecular Cell, 20, 793–799.

    PubMed  CAS  Google Scholar 

  113. Johnson, R. E., Washington, M. T., Haracska, L., Prakash, S., & Prakash, L. (2000). Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions. Nature, 406, 1015–1019.

    PubMed  CAS  Google Scholar 

  114. Zhang, Y., Wu, X., Guo, D., Rechkoblit, O., & Wang, Z. (2002). Activities of human DNA polymerase kappa in response to the major benzo[a]pyrene DNA adduct: Error-free lesion bypass and extension synthesis from opposite the lesion. DNA Repair, 1, 559–569.

    PubMed  CAS  Google Scholar 

  115. Suzuki, N., Ohashi, E., Kolbanovskiy, A., Geacintov, N. E., Grollman, A. P., Ohmori, H., et al. (2002). Translesion synthesis by human DNA polymerase kappa on a DNA template containing a single stereoisomer of dG-(+)- or dG-(-)-anti-N(2)-BPDE (7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene). Biochemistry, 41, 6100–6106.

    PubMed  CAS  Google Scholar 

  116. Ogi, T., Shinkai, Y., Tanaka, K., & Ohmori, H. (2002). Polkappa protects mammalian cells against the lethal and mutagenic effects of benzo[a]pyrene. Proceedings of the National Academy of Sciences of the United States of America, 99, 15548–15553.

    PubMed  CAS  Google Scholar 

  117. Ogi, T., Kannouche, P., & Lehmann, A. R. (2005). Localisation of human Y-family DNA polymerase kappa: Relationship to PCNA foci. Journal of Cell Science, 118, 129–136.

    PubMed  CAS  Google Scholar 

  118. Nelson, J. R., Lawrence, C. W., & Hinkle, D. C. (1996). Deoxycytidyl transferase activity of yeast REV1 protein. Nature, 382, 729–731.

    PubMed  CAS  Google Scholar 

  119. Nelson, J. R., Lawrence, C. W., & Hinkle, D. C. (1996). Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Science, 272, 1646–1649.

    PubMed  CAS  Google Scholar 

  120. Lambert, S., & Carr, A. M. (2005). Checkpoint responses to replication fork barriers. Biochimie, 87, 591–602.

    PubMed  CAS  Google Scholar 

  121. Unsal-Kacmaz, K., Chastain, P. D., Qu, P. P., Minoo, P., Cordeiro-Stone, M., Sancar, A., et al. (2007). The human Tim/Tipin complex coordinates an Intra-S checkpoint response to UV that slows replication fork displacement. Molecular and Cellular Biology, 27, 3131–3142.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in RK’s laboratory is supported by grants from the Dutch Cancer Society (KWF), the Netherlands Organization for Scientific Research (NWO), the Netherlands Genomics Initiative/NWO, the Association for International Cancer Research (AICR) and the European Commission (Integrated Project 512113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Kanaar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budzowska, M., Kanaar, R. Mechanisms of Dealing with DNA Damage-Induced Replication Problems. Cell Biochem Biophys 53, 17–31 (2009). https://doi.org/10.1007/s12013-008-9039-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-008-9039-y

Keywords

Navigation