Skip to main content

Advertisement

Log in

Folic Acid Acts Through DNA Methyltransferases to Induce the Differentiation of Neural Stem Cells into Neurons

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The present study investigated the roles of folic acid and DNA methyltransferases (DNMTs) in the differentiation of neural stem cells (NSCs). Neonatal rat NSCs were grown in suspended neurosphere cultures and identified by their expression of SOX2 protein and capacity for self-renewal. Then NSCs were assigned to five treatment groups for cell differentiation: control (folic acid-free differentiation medium), low folic acid (8 μg/mL), high folic acid (32 μg/mL), low folic acid and DNMT inhibitor zebularine (8 μg/mL folic acid and 150 nmol/mL zebularine), and high folic acid and zebularine (32 μg/mL folic acid and 150 nmol/mL zebularine). After 6 days of cell differentiation, immunocytochemistry and western blot analyses were performed to identify neurons by β-tubulin III protein expression and astrocytes by GFAP expression. We observed that folic acid increased DNMT activity which may be regulated by the cellular S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), and the abundance of neurons but decreased the number of astrocytes. Zebularine blocked these effects of folic acid. In conclusion, folic acid acts through elevation of DNMT activity to increase neuronal differentiation and decrease astrocytic differentiation in NSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Blom, H. J., & Smulders, Y. (2011). Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. Journal of Inherited Metabolic Disease, 34, 75–81.

    Article  PubMed  CAS  Google Scholar 

  2. Daly, L. E., Kirke, P. N., Molloy, A., Weir, D. G., & Scott, J. M. (1995). Folate levels and neural tube defects. Implications for prevention. Journal of the American Medical Association, 274, 1698–1702.

    Article  PubMed  CAS  Google Scholar 

  3. Haan, M. N., Miller, J. W., Aiello, A. E., Whitmer, R. A., Jagust, W. J., Mungas, D. M., et al. (2007). Homocysteine, B vitamins, and the incidence of dementia and cognitive impairment: results from the Sacramento Area Latino Study on Aging. American Journal of Clinical Nutrition, 85, 511–517.

    PubMed  CAS  Google Scholar 

  4. Morris, M. S. (2003). Homocysteine and Alzheimer’s disease. Lancet Neurology, 2, 425–428.

    Article  PubMed  CAS  Google Scholar 

  5. Van Dam, F., & Van Gool, W. A. (2009). Hyperhomocysteinemia and Alzheimer’s disease: A systematic review. Archives of Gerontology and Geriatrics, 48, 425–430.

    Article  PubMed  Google Scholar 

  6. Gage, F. H. (2000). Mammalian neural stem cells. Science, 287, 1433–1438.

    Article  PubMed  CAS  Google Scholar 

  7. Edlund, T., & Jessell, T. M. (1999). Progression from extrinsic to intrinsic signaling in cell fate specification: a view from the nervous system. Cell, 96, 211–224.

    Article  PubMed  CAS  Google Scholar 

  8. Mu, Y., Lee, S. W., & Gage, F. H. (2010). Signaling in adult neurogenesis. Current Opinion in Neurobiology, 20, 416–423.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang, X., Liu, H., Cong, G., Tian, Z., Ren, D., Wilson, J. X., et al. (2008). Effects of folate on notch signaling and cell proliferation in neural stem cells of neonatal rats in vitro. Journal of Nutritional Science Vitaminology, 54, 353–356.

    Article  PubMed  Google Scholar 

  10. Zhang, X. M., Huang, G. W., Tian, Z. H., Ren, D. L., & Wilson, J. X. (2009). Folate stimulates ERK1/2 phosphorylation and cell proliferation in fetal neural stem cells. Nutritional Neuroscience, 12, 226–232.

    Article  PubMed  Google Scholar 

  11. Zhang, X., Huang, G. W., Liu, H., Chang, H., & Wilson, J. X. (2012). Folic acid enhances Notch signaling, hippocampal neurogenesis, and cognitive function in a rat model of cerebral ischemia. Nutritional Neuroscience, 15, 55–61.

    PubMed  CAS  Google Scholar 

  12. Juliandi, B., Abematsu, M., & Nakashima, K. (2010). Epigenetic regulation in neural stem cell differentiation. Development, Growth & Differentiation, 52, 493–504.

    Article  CAS  Google Scholar 

  13. Mohamed Ariff, I., Mitra, A., & Basu, A. (2012). Epigenetic regulation of self-renewal and fate determination in neural stem cells. Journal of Neuroscience Research, 90, 529–539.

    Article  PubMed  CAS  Google Scholar 

  14. Tawa, R., Ono, T., Kurishita, A., Okada, S., & Hirose, S. (1990). Changes of DNA methylation level during pre- and postnatal periods in mice. Differentiation, 45, 44–48.

    Article  PubMed  CAS  Google Scholar 

  15. Iskandar, B. J., Rizk, E., Meier, B., Hariharan, N., Bottiglieri, T., Finnell, R. H., et al. (2010). Folate regulation of axonal regeneration in the rodent central nervous system through DNA methylation. Journal of Clinical Investigation, 120, 1603–1616.

    Article  PubMed  CAS  Google Scholar 

  16. Jacob, R. A., Gretz, D. M., Taylor, P. C., James, S. J., Pogribny, I. P., Miller, B. J., et al. (1998). Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. Journal of Nutrition, 128, 1204–1212.

    PubMed  CAS  Google Scholar 

  17. Pogribny, I. P., Miller, B. J., & James, S. J. (1997). Alterations in hepatic p53 gene methylation patterns during tumor progression with folate/methyl deficiency in the rat. Cancer Letters, 115, 31–38.

    Article  PubMed  CAS  Google Scholar 

  18. Champion, C., Guianvarc’h, D., Senamaud-Beaufort, C., Jurkowska, R. Z., Jeltsch, A., Ponger, L., et al. (2010). Mechanistic insights on the inhibition of c5 DNA methyltransferases by zebularine. PLoS ONE, 5, e12388.

    Article  PubMed  Google Scholar 

  19. Ellis, P., Fagan, B. M., Magness, S. T., Hutton, S., Taranova, O., Hayashi, S., et al. (2004). SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Developmental Neuroscience, 26, 148–165.

    Article  PubMed  CAS  Google Scholar 

  20. Favaro, R., Valotta, M., Ferri, A. L., Latorre, E., Mariani, J., Giachino, C., et al. (2009). Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nature Neuroscience, 12, 1248–1256.

    Article  PubMed  CAS  Google Scholar 

  21. Fatemi, M., Hermann, A., Gowher, H., & Jeltsch, A. (2002). Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA. European Journal of Biochemistry, 269(20), 4981–4984.

    Article  PubMed  CAS  Google Scholar 

  22. Feng, J., Chang, H., Li, E., & Fan, G. (2005). Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. Journal of Neuroscience Research, 79, 734–746.

    Article  PubMed  CAS  Google Scholar 

  23. Ricci, G., Volpi, L., Pasquali, L., Petrozzi, L., & Siciliano, G. (2009). Astrocyte-neuron interactions in neurological disorders. Journal of Biological Physics, 35, 317–336.

    Article  PubMed  CAS  Google Scholar 

  24. Gu, Y., Arruda-Carvalho, M., Wang, J., Janoschka, S. R., Josselyn, S. A., Frankland, P. W., et al. (2012). Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nature Neuroscience, 15, 1700–1706.

    Article  PubMed  CAS  Google Scholar 

  25. Mattson, M. P., & Shea, T. B. (2003). Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neuroscience, 26, 137–146.

    Article  CAS  Google Scholar 

  26. Steinfeld, R., Grapp, M., Kraetzner, R., Dreha-Kulaczewski, S., Helms, G., Dechent, P., et al. (2009). Folate receptor alpha defect causes cerebral folate transport deficiency: a treatable neurodegenerative disorder associated with disturbed myelin metabolism. American Journal of Human Genetics, 85, 354–363.

    Article  PubMed  CAS  Google Scholar 

  27. Feng, J., Zhou, Y., Campbell, S. L., Le, T., Li, E., Sweatt, J. D., et al. (2010). Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nature Neuroscience, 13, 423–430.

    Article  PubMed  CAS  Google Scholar 

  28. Levenson, J. M., Roth, T. L., Lubin, F. D., Miller, C. A., Huang, I. C., Desai, P., et al. (2006). Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. Journal of Biological Chemistry, 281, 15763–15773.

    Article  PubMed  CAS  Google Scholar 

  29. Takizawa, T., Nakashima, K., Namihira, M., Ochiai, W., Uemura, A., Yanagisawa, M., et al. (2001). DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Developmental Cell, 1, 749–758.

    Article  PubMed  CAS  Google Scholar 

  30. Jafari, S., Hosseini, M. S., Hajian, M., Forouzanfar, M., Jafarpour, F., Abedi, P., et al. (2011). Improved In vitro development of cloned bovine embryos using s-adenosylhomocysteine, a Non-toxic epigenetic modifying reagent. Molecular Reproduction and Development, 78, 576–584.

    Article  PubMed  CAS  Google Scholar 

  31. Saavedra, O. M., Isakovic, L., Llewellyn, D. B., Zhan, L., Bernstein, N., Claridge, S., et al. (2009). SAR around (L)-S-adenosyl-L-homocysteine, an inhibitor of human DNA methyltransferase (DNMT) enzymes. Bioorganic & Medicinal Chemistry Letters, 19, 2747–2751.

    Article  CAS  Google Scholar 

  32. Fang, M., Chen, D., & Yang, C. S. (2007). Dietary polyphenols may affect DNA methylation. Journal of Nutrition, 137, 223S–228S.

    PubMed  CAS  Google Scholar 

  33. Singh, R. P., Shiue, K., Schomberg, D., & Zhou, F. C. (2009). Cellular epigenetic modifications of neural stem cell differentiation. Cell Transplantation, 18, 1197–1211.

    Article  PubMed  Google Scholar 

  34. Pogribny, I. P., Karpf, A. R., James, S. R., Melnyk, S., Han, T., & Tryndyak, V. P. (2008). Epigenetic alterations in the brains of Fisher 344 rats induced by long-term administration of folate/methyl-deficient diet. Brain Research, 1237, 25–34.

    Article  PubMed  CAS  Google Scholar 

  35. Ruan, Y., Peterson, M. H., Wauson, E. M., Waes, J. G., Finnell, R. H., & Vorce, R. L. (2000). Folic acid protects SWV/Fnn embryo fibroblasts against arsenic toxicity. Toxicology Letters, 117(3), 129–137.

    Article  PubMed  CAS  Google Scholar 

  36. Boot, M. J., Steegers-Theunissen, R. P., Poelmann, R. E., Van Iperen, L., Lindemans, J., & Gittenberger-de Groot, A. C. (2003). Folic acid and homocysteine affect neural crest and neuroepithelial cell outgrowth and differentiation in vitro. Developmental Dynamics, 227(2), 301–308.

    Article  PubMed  CAS  Google Scholar 

  37. Wang, X., & Fenech, M. (2003). A comparison of folic acid and 5-methyltetrahydrofolate for prevention of DNA damage and cell death in human lymphocytes in vitro. Mutagenesis, 18, 81–86.

    Article  PubMed  CAS  Google Scholar 

  38. Cheng, J. C., Matsen, C. B., Gonzales, F. A., Ye, W., Greer, S., Marquez, V. E., et al. (2003). Inhibition of DNA methylation and reactivation of silenced genes by zebularine. Journal of the National Cancer Institute, 95, 399–409.

    Article  PubMed  CAS  Google Scholar 

  39. Dote, H., Cerna, D., Burgan, W. E., Carter, D. J., Cerra, M. A., Hollingshead, M. G., et al. (2005). Enhancement of in vitro and in vivo tumor cell radiosensitivity by the DNA methylation inhibitor zebularine. Clinical Cancer Research, 11(12), 4571–4579.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Natural Science Foundation of China (No. 81072289, 81130053 and 30901192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowei Huang.

Additional information

Suhui Luo and Xumei Zhang contributed equally to this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, S., Zhang, X., Yu, M. et al. Folic Acid Acts Through DNA Methyltransferases to Induce the Differentiation of Neural Stem Cells into Neurons. Cell Biochem Biophys 66, 559–566 (2013). https://doi.org/10.1007/s12013-012-9503-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9503-6

Keywords

Navigation