Skip to main content

Advertisement

Log in

The gastrointestinal tract stem cell niche

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

The gastrointestinal epithelium is unique in that cell proliferation, differentiation, and apoptosis occur in an orderly fashion along the crypt-villus axis. The intestinal crypt is mainly a proliferative compartment, is monoclonal and is maintained by stem cells. The villus represents the differentiated compartment, and is polyclonal as it receives cells from multiple crypts. In the small intestine, cell migration begins near the base of the crypt, and cells migrate from here emerging onto the villi. The basal crypt cells at position 5 are candidate stem cells. As the function of stem cells is to maintain the integrity of the intestinal epithelium, it must self-renew, proliferate, and differentiate within a protective niche. This niche is made up of proliferating and differentiating epithelial cells and surrounding mesenchymal cells. These mesenchymal cells promote the epithelial-mesenchymal crosstalk required to maintain the niche. A stochastic model of cell division has been proposed to explain how a single common ancestral stem cell exists from which all stem cells in a niche are descended. Our group has argued that these crypts then clonally expand by crypt fission, forming two daughters’ crypts, and that this is the mechanism by which mutated stem cells or even cancer stem cell clones expand in the colon and in the entire gastrointestinal tract. Until recently, the differentiation potential of stem cells into adult tissues has been thought to be limited to cell lineages in the organ from which they were derived. Bone marrow cells are rare among adult stem cells regarding their abundance and role in the continuous, lifelong, physiological replenishment of circulating cells. In human and mice experiments, we have shown that bone marrow can contribute to the regeneration of intestinal myofibroblasts and thereby after epithelium following damage, through replacing the cells, which maintain the stem cells niche. Little is known about the markers characterizing the stem and transit amplifying populations of the gastrointestinal tract, although musashi-1 and hairy and enhancer of split homolog-1 have been proposed. As the mammalian gastrointestinal tract develops from the embryonic gut, it is made up of an endodermally-derived epithelium surrounded by cells of mesoderm origin. Cell signaling between these two tissue layers plays a critical role in coordinating patterning and organogenesis of the gut and its derivatives. Many lines of evidence have revealed that Wnt signaling is the most dominant force in controlling cell proliferation, differentiation, and apoptosis along the crypt-villus axis. We have found Wnt messenger RNAs expression in intestinal subepithelial myofibroblasts and frizzled messenger RNAs expression in both myofibroblasts and crypt epithelium. Moreover, there are many other factors, for example, bone morphogenetic protein, homeobox, forkhead, hedgehog, homeodomain, and platelet-derived growth factor that are also important to stem cell signaling in the gastrointestinal tract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schofield R. Blood Cells 1978;4:7–25.

    PubMed  CAS  Google Scholar 

  2. Lin H. Nat Rev Genet 2002;3:931–940.

    Article  PubMed  CAS  Google Scholar 

  3. Spradling A, Drummond-Barbosa D, Kai T. Nature 2001;414:98–104.

    Article  PubMed  CAS  Google Scholar 

  4. Xie T, Spradling AC. Science 2000;290:328–330.

    Article  PubMed  CAS  Google Scholar 

  5. Brinster RL, Zimmermann JW. Proc Natl Acad Sci USA 1994;91:11,298–11,302.

    Google Scholar 

  6. Nishimura EK, Jordan SA, Oshima H, et al. Nature 2002;416:854–860.

    Article  PubMed  CAS  Google Scholar 

  7. Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Cell 2001;104:233–245.

    Article  PubMed  CAS  Google Scholar 

  8. Wright NA. Int J Exp Pathol 2000;81:117–143.

    Article  PubMed  CAS  Google Scholar 

  9. Andoh A, Bamba S, Fujiyama Y, Brittan M, Wright NA. J Gastroenterol 2005;40:1089–1099.

    Article  PubMed  Google Scholar 

  10. Kim KM, Oh YL, Ko JS, Choe YH, Seo JK. J Gastroenterol 2004;39:231–237.

    Article  PubMed  CAS  Google Scholar 

  11. Potten CS, Loeffler M. Development 1990;110:1001–1020.

    PubMed  CAS  Google Scholar 

  12. Bjerknes M, Cheng H. Am J Anat 1981;160:51–63.

    Article  PubMed  CAS  Google Scholar 

  13. Bjerknes M, Cheng H. Am J Anat 1981;160:77–91.

    Article  PubMed  CAS  Google Scholar 

  14. Lee ER, Leblond CP. Am J Anat 1985;172:241–259.

    Article  PubMed  CAS  Google Scholar 

  15. Karam SM, Leblond CP. Anat Rec 1993;236:259–279.

    Article  PubMed  CAS  Google Scholar 

  16. Yamada K, Yoshitake K, Sato M, Ahnen DJ. Gastroenterology 1992;103:160–167.

    PubMed  CAS  Google Scholar 

  17. Cheng H, Leblond CP. Am J Anat 1974;141:503–519.

    Article  PubMed  CAS  Google Scholar 

  18. Cai WB, Roberts SA, Potten CS. Int J Radiat Biol 1997;71:573–579.

    Article  PubMed  CAS  Google Scholar 

  19. Potten CS, Booth C, Pritchard DM. Int J Exp Pathol 1997;78:219–243.

    Article  PubMed  CAS  Google Scholar 

  20. Potten CS. Philos Trans R Soc Lond B Biol Sci 1998;353:821–830.

    Article  PubMed  CAS  Google Scholar 

  21. Watt FM, Hogan BL. Science 2000;287:1427–1430.

    Article  PubMed  CAS  Google Scholar 

  22. Yatabe Y, Tavare S, Shibata D. Proc Natl Acad Sci USA 2001;98:10,839–10,844.

    Article  CAS  Google Scholar 

  23. Kim KM, Shibata D. Oncogene 2002;21:5441–5449.

    Article  PubMed  CAS  Google Scholar 

  24. Potten CS, Li YQ, O’Connor PJ, Winton DJ. Carcinogenesis 1992;13:2305–2312.

    Article  PubMed  CAS  Google Scholar 

  25. Cairns J. Nature 1975;255:197–200.

    Article  PubMed  CAS  Google Scholar 

  26. Potten CS, Owen G, Booth D. J Cell Sci 2002;115:2381–2388.

    PubMed  CAS  Google Scholar 

  27. Preston SL, Mandir N, Hunt T, Goodlad RA, Wright NA, Alison MR. Cell Prolif 2005;38:317.

    Google Scholar 

  28. Kim JY, Siegmund KD, Tavare S, Shibata D. BMC Med 2005;3:10.

    Article  PubMed  Google Scholar 

  29. Park HS, Goodlad RA, Wright NA. Am J Pathol 1995;147:1416–1427.

    PubMed  CAS  Google Scholar 

  30. Park HS, Goodlad RA, Wright NA. Cancer Res 1997;57:4507–4510.

    PubMed  CAS  Google Scholar 

  31. Park HS, Goodlad RA, Ahnen DJ, et al. Am J Pathol 1997;151:843–852.

    PubMed  CAS  Google Scholar 

  32. Wong WM, Mandir N, Goodlad RA, et al. Gut 2002;50:212–217.

    Article  PubMed  Google Scholar 

  33. Wright NA. Philos Trans R Soc Lond B Biol Sci 1998;353:925–933.

    Article  PubMed  CAS  Google Scholar 

  34. Preston SL, Wong WM, Chan AO, et al. Cancer Res 2003;63:3819–3825.

    PubMed  CAS  Google Scholar 

  35. Wasan HS, Park HS, Liu KC, et al. J Pathol 1998;185:246–255.

    Article  PubMed  CAS  Google Scholar 

  36. Yen TH, Wright NA, Poulsom R. In Horizons in Medicine. Franklyn J, (ed), Royal College of Physicians of London, London: 2004 Vol. 16, pp. 249–257.

    Google Scholar 

  37. Ferrari G, Cusella-De Angelis G, Coletta M, et al. Science 1998;279:1528–1530.

    Article  PubMed  CAS  Google Scholar 

  38. Eglitis MA, Mezey E. Proc Natl Acad Sci USA 1997;94:4080–4085.

    Article  PubMed  CAS  Google Scholar 

  39. Poulsom R, Forbes SJ, Hodivala-Dilke K, et al. J Pathol 2001;195:229–235.

    Article  PubMed  CAS  Google Scholar 

  40. Poulsom R, Alison MR, Forbes SJ, Wright NA. J Pathol 2002;197:441–456.

    Article  PubMed  Google Scholar 

  41. Poulsom R, Alison MR, Cook T, et al. J Am Soc Nephrol 2003; 14(Suppl 1):S48-S54.

    Article  PubMed  Google Scholar 

  42. Poulsom R. Nephron Exp Nephrol 2003;93:e53.

    Google Scholar 

  43. Fang TC, Alison MR, Cook HT, Jeffery R, Wright NA, Poulsom R. J Am Soc Nephrol 2005;16:1723–1732.

    Article  PubMed  CAS  Google Scholar 

  44. Fang TC, Alison MR, Wright NA, Poulsom R. Int J Exp Pathol 2004;85:115–124.

    Article  PubMed  CAS  Google Scholar 

  45. Fang TC, Poulsom R. Birth Defects Res C Embryo Today 2003;69:238–249.

    Article  PubMed  CAS  Google Scholar 

  46. Roufosse C, Bou-Gharios G, Prodromidi E, et al. J Am Soc Nephrol 2006;17:775–782.

    Article  PubMed  CAS  Google Scholar 

  47. Alison MR, Poulsom R, Jeffery R, et al. Nature 2000;406:257.

    Article  PubMed  CAS  Google Scholar 

  48. Alison MR, Poulsom R, Forbes S, Wright NA. J Pathol 2002;197:419–423.

    Article  PubMed  Google Scholar 

  49. Alison MR. Semin Liver Dis 2003;23:325–336.

    Article  PubMed  CAS  Google Scholar 

  50. Alison MR, Poulsom R, Otto WR, et al. J Clin Pathol 2004;57:113–120.

    Article  PubMed  CAS  Google Scholar 

  51. Alison MR, Poulsom R, Otto WR, et al. J Cell Sci 2003;116:599–603.

    Article  PubMed  Google Scholar 

  52. Brittan M, Braun KM, Reynolds LE, et al. J Pathol 2005;205:1–13.

    Article  PubMed  Google Scholar 

  53. Brittan M, Hunt T, Jeffery R, et al. Gut 2002;50:752–757.

    Article  PubMed  CAS  Google Scholar 

  54. Brittan M, Chance V, Elia G, et al. Gastroenterology 2005;128:1984–1995.

    Article  PubMed  Google Scholar 

  55. Brittan M, Wright NA. Gut 2004;53:899–910.

    Article  PubMed  CAS  Google Scholar 

  56. Brittan M, Wright NA. Cell Prolif 2004;37:35–53.

    Article  PubMed  CAS  Google Scholar 

  57. Brittan M, Wright NA. J Pathol 2002;197:492–509.

    Article  PubMed  Google Scholar 

  58. Direkze NC, Hodivala-Dilke K, Jeffery R, et al. Cancer Res 2004;64:8492–8495.

    Article  PubMed  CAS  Google Scholar 

  59. Direkze NC, Forbes SJ, Brittan M, et al. Stem Cells 2003;21:514–520.

    Article  PubMed  Google Scholar 

  60. Direkze NC, Jeffery R, Hodivala-Dilke K, et al. Cancer Res 2006;66:1265–1269.

    Article  PubMed  CAS  Google Scholar 

  61. Bamba S, Lee CY, Brittan M, et al. J Pathol 2006;209:265–273.

    Article  PubMed  CAS  Google Scholar 

  62. Vig P, Russo FP, Edwards RJ, et al. Hepatology 2006;43:316–324.

    Article  PubMed  Google Scholar 

  63. Forbes SJ, Russo FP, Rey V, et al. Gastroenterology 2004;126:955–963.

    Article  PubMed  Google Scholar 

  64. Brodie JC, Humes HD. Pharmacol Rev 2005;57:299–313.

    Article  PubMed  Google Scholar 

  65. Herzog EL, Chai L, Krause DS. Blood 2003;102:3483–3493.

    Article  PubMed  CAS  Google Scholar 

  66. Kucia M, Reca R, Jala VR, Dawn B, Ratajczak J, Ratajczak MZ. Leukemia 2005;19:1118–1127.

    Article  PubMed  CAS  Google Scholar 

  67. Jones PH, Harper S, Watt FM. Cell 1995;80:83–93.

    Article  PubMed  CAS  Google Scholar 

  68. Berardi AC, Wang A, Levine JD, Lopez P, Scadden DT. Science 1995;267:104–108.

    Article  PubMed  CAS  Google Scholar 

  69. Kaneko Y, Sakakibara S, Imai T, et al. Dev Neurosci 2000;22:139–153.

    Article  PubMed  CAS  Google Scholar 

  70. Sakakibara S, Imai T, Hamaguchi K, et al. Dev Biol 1996;176:230–242.

    Article  PubMed  CAS  Google Scholar 

  71. Nakamura M, Okano H, Blendy JA, Montell C. Neuron 1994;13:67–81.

    Article  Google Scholar 

  72. Okabe M, Imai T, Kurusu M, Hiromi Y, Okano H. Nature 2001;411:94–98.

    Article  PubMed  CAS  Google Scholar 

  73. Sakakibara S, Okano H. J Neurosci 1997;17:8300–8312.

    PubMed  CAS  Google Scholar 

  74. Okano H, Imai T, Okabe M. J Cell Sci 2002;115:1355–1359.

    PubMed  CAS  Google Scholar 

  75. Sakakibara S, Nakamura Y, Yoshida T, et al. Proc Natl Acad Sci USA 2002;99:15,194–15,199.

    Article  CAS  Google Scholar 

  76. Akazawa C, Sasai Y, Nakanishi S, Kageyama R. J Biol Chem 1992;267:21,879–21,885.

    CAS  Google Scholar 

  77. Sasai Y, Kageyama R, Tagawa Y, Shigemoto R, Nakanishi S. Genes Dev 1992;6:2620–2634.

    PubMed  CAS  Google Scholar 

  78. Nakamura Y, Sakakibara S, Miyata T, et al. J Neurosci 2000;20:283–293.

    PubMed  CAS  Google Scholar 

  79. Imai T, Tokunaga A, Yoshida T, et al. Mol Cell Biol 2001;21:3888–3890.

    Article  PubMed  CAS  Google Scholar 

  80. Jensen J, Pedersen EE, Galante P, et al. Nat Genet 2000;24:36–44.

    Article  PubMed  CAS  Google Scholar 

  81. Kayahara T, Sawada M, Takaishi S, et al. FEBS Lett 2003;535:131–135.

    Article  PubMed  CAS  Google Scholar 

  82. Teufel A, Wong EA, Mukhopadhyay M, Malik N, Westphal H. Biochim Biophys Acta 2003;1627:147–152.

    PubMed  CAS  Google Scholar 

  83. Stappenbeck TS, Mills JC, Gordon JI. Proc Natl Acad Sci USA 2003;100:1004–1009.

    Article  PubMed  CAS  Google Scholar 

  84. Giannakis M, Stappenbeck TS, Mills JC, et al. J Biol Chem 2006;281:11,292–11,300.

    Article  CAS  Google Scholar 

  85. Pascal RR, Kaye GI, Lane N. Gastroenterology 1968;54:835–851.

    PubMed  CAS  Google Scholar 

  86. Marsh MN, Trier JS. Gastroenterology 1974;67:636–645.

    PubMed  CAS  Google Scholar 

  87. Giles RH, van Es JH, Clevers H. Biochim Biophys Acta 2003;1653:1–24.

    PubMed  CAS  Google Scholar 

  88. Willert K, Nusse R. Curr Opin Genet Dev 1998;8:95–102.

    Article  PubMed  CAS  Google Scholar 

  89. Bienz M, Clevers H. Cell 2000;103:311–320.

    Article  PubMed  CAS  Google Scholar 

  90. Pinto D, Clevers H. Biol Cell 2005;97:185–196.

    Article  PubMed  CAS  Google Scholar 

  91. Smith K, Bui TD, Poulsom R, Kaklamanis L, Williams G, Harris AL. Br J Cancer 1999;81:496–502.

    Article  PubMed  CAS  Google Scholar 

  92. Korinek V, Barker N, Moerer P, et al. Nat Genet 1998;19:379–383.

    Article  PubMed  CAS  Google Scholar 

  93. Pinto D, Gregorieff A, Begthel H, Clevers H. Genes Dev 2003;17:1709–1713.

    Article  PubMed  CAS  Google Scholar 

  94. Gregorieff A, Pinto D, Begthel H, Destree O, Kielman M, Clevers H. Gastroenterology 2005;129:626–638.

    Article  PubMed  CAS  Google Scholar 

  95. Haramis AP, Begthel H, van den Born M, et al. Science 2004;303:1684–1686.

    Article  PubMed  CAS  Google Scholar 

  96. He XC, Zhang J, Tong WG, et al. Nat Genet 2004;36:1117–1121.

    Article  PubMed  CAS  Google Scholar 

  97. Subramanian V, Meyer B, Evans GS. Differentiation 1998;64:11–18.

    Article  PubMed  CAS  Google Scholar 

  98. Chawengsaksophak K, James R, Hammond VE, Kontgen F, Beck F. Nature 1997;386:84–87.

    Article  PubMed  CAS  Google Scholar 

  99. Beck F, Chawengsaksophak K, Waring P, Playford RJ, Furness JB. Proc Natl Acad Sci USA 1999;96:7318–7323.

    Article  PubMed  CAS  Google Scholar 

  100. Beck F, Chawengsaksophak K, Luckett J, et al. Dev Biol 2003;255:399–406.

    Article  PubMed  CAS  Google Scholar 

  101. Lickert H, Domon C, Huls G, et al. Development 2000;127:3805–3813.

    PubMed  CAS  Google Scholar 

  102. Kaestner KH, Silberg DG, Traber PG, Schutz G. Genes Dev 1997;11:1583–1595.

    PubMed  CAS  Google Scholar 

  103. Ramalho-Santos M, Melton DA, McMahon AP. Development 2000;127:2763–2772.

    PubMed  CAS  Google Scholar 

  104. Madison BB, Braunstein K, Kuizon E, Portman K, Qiao XT, Gumucio DL. Development 2005;132:279–289.

    Article  PubMed  CAS  Google Scholar 

  105. Pabst O, Zweigerdt R, Arnold HH. Development 1999;126:2215–2225.

    PubMed  CAS  Google Scholar 

  106. Karlsson L, Lindahl P, Heath JK, Betsholtz C. Development 2000;127:3457–3466.

    PubMed  CAS  Google Scholar 

  107. Moore KA, Lemischka IR. Science 2006;311:1880–1885.

    Article  PubMed  CAS  Google Scholar 

  108. Batts LE, Polk DB, Dubois RN, Kulessa H. Dev Dyn 2006;235:1563–1570.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzung-Hai Yen MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yen, TH., Wright, N.A. The gastrointestinal tract stem cell niche. Stem Cell Rev 2, 203–212 (2006). https://doi.org/10.1007/s12015-006-0048-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-006-0048-1

Index Entries

Navigation