Skip to main content
Log in

The Wnt Signal Transduction Pathway in Stem Cells and Cancer Cells: Influence on Cellular Invasion

  • Published:
Stem Cell Reviews Aims and scope Submit manuscript

Abstract

The regulative network conducting adult stem cells in endogenous tissue repair is of prime interest for understanding organ regeneration as well as preventing degenerative and malignant diseases. One major signal transduction pathway which is involved in the control of these (patho)physiological processes is the Wnt pathway. Recent results obtained in our laboratories showed for the first time that canonical Wnt signaling is critically involved in the control of the migration/invasion behaviour of human mesenchymal stem cells (hMSC). In the first part of this review, we describe that the regenerative state is closely linked to the activation of the Wnt pathway. Central hallmarks of activated stem cells are recapitulated in a similar way also in cancer metastasis, where the acquisition of an invasive cancer stem cell phenotype is associated with the induction of Wnt-mediated epithelial to mesenchymal transition (EMT). In the second part, the influence of proinflammatory cytokines such as transforming growth factor (TGF-)β1, interleukin (Il-)1β, and tumor necrosis factor (TNF-)α is discussed with regard to the invasive characteristics of hMSC. In this context, special attention has been paid on the role of matrix metalloproteinases (MMPs), such as MMP-2, MMP-9 and membrane type 1 (MT1)-MMP, as well as on the tissue inhibitors of metalloproteinases TIMP-1 and TIMP-2. Putative cross-talks between different signal transduction pathways that may amplify the invasive capacity of this stem cell population are also discussed. Finally, the consequences towards future drug-mediated therapeutical modifications of Wnt signaling in stem cells and tumor cells are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.

    Article  PubMed  CAS  Google Scholar 

  2. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418(6893), 41–49.

    Article  PubMed  CAS  Google Scholar 

  3. Jiang, Y., Vaessen, B., Lenvik, T., Blackstad, M., Reyes, M., & Verfaillie, C. M. (2002). Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Experimental Hematology, 30(8), 896–904.

    Article  PubMed  CAS  Google Scholar 

  4. Majumdar, M. K., Thiede, M. A., Haynesworth, S. E., Bruder, S. P., & Gerson, S. L. (2000). Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. Journal of Hematotherapy & Stem Cell Research, 9(6), 841–848.

    Article  CAS  Google Scholar 

  5. Cheng, L., Hammond, H., Ye, Z., Zhan, X., & Dravid, G. (2003). Human adult marrow cells support prolonged expansion of human embryonic stem cells in culture. Stem Cells, 21(2), 131–142.

    Article  PubMed  CAS  Google Scholar 

  6. Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815–1822.

    Article  PubMed  CAS  Google Scholar 

  7. MacKenzie, T. C., & Flake, A. W. (2001). Human mesenchymal stem cells persist, demonstrate site-specific multipotential differentiation, and are present in sites of wound healing and tissue regeneration after transplantation into fetal sheep. Blood Cells, Molecules & Diseases, 27(3), 601–604.

    Article  CAS  Google Scholar 

  8. Kawada, H., Fujita, J., Kinjo, K., Matsuzaki, Y., Tsuma, M., Miyatake, H., et al. (2004). Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood, 104(12), 3581–3587.

    Article  PubMed  CAS  Google Scholar 

  9. Koc, O. N., Gerson, S. L., Cooper, B. W., Dyhouse, S. M., Haynesworth, S. E., Caplan, A. I., et al. (2000). Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. Journal of Clinical Oncology, 18(2), 307–316.

    PubMed  CAS  Google Scholar 

  10. Horwitz, E. M., Prockop, D. J., Fitzpatrick, L. A., Koo, W. W., Gordon, P. L., Neel, M., et al. (1999). Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nature Medicine, 5(3), 309–313.

    Article  PubMed  CAS  Google Scholar 

  11. Chamberlain, J. R., Schwarze, U., Wang, P. R., Hirata, R. K., Hankenson, K. D., Pace, J. M., et al. (2004). Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science, 303(5661), 1198–1201.

    Article  PubMed  CAS  Google Scholar 

  12. Prockop, D. J. (2004). Targeting gene therapy for osteogenesis imperfecta. New England Journal of Medicine, 350(22), 2302–2304.

    Article  PubMed  CAS  Google Scholar 

  13. Khakoo, A. Y., Pati, S., Anderson, S. A., Reid, W., Elshal, M. F., Rovira, I. I., et al. (2006). Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. Journal of Experimental Medicine, 203(5), 1235–1247.

    Article  PubMed  CAS  Google Scholar 

  14. Nakamizo, A., Marini, F., Amano, T., Khan, A., Studeny, M., Gumin, J., et al. (2005). Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Research, 65(8), 3307–3318.

    PubMed  CAS  Google Scholar 

  15. Bianco, P., & Robey, P. G. (2001). Stem cells in tissue engineering. Nature, 414(6859), 118–121.

    Article  PubMed  CAS  Google Scholar 

  16. Meriane, M., Duhamel, S., Lejeune, L., Galipeau, J., & Annabi, B. (2006). Cooperation of matrix metalloproteinases with the RhoA/Rho kinase and mitogen-activated protein kinase kinase-1/extracellular signal-regulated kinase signaling pathways is required for the sphingosine-1-phosphate-induced mobilization of marrow-derived stromal cells. Stem Cells, 24(11), 2557–2565.

    Article  PubMed  CAS  Google Scholar 

  17. Korbling, M., & Estrov, Z. (2003). Adult stem cells for tissue repair––A new therapeutic concept? New England Journal of Medicine, 349(6), 570–582.

    Article  PubMed  Google Scholar 

  18. Li, L., & Xie, T. (2005). Stem cell niche: Structure and function. Annual Review of Cell and Developmental Biology, 21, 605–631.

    Article  PubMed  CAS  Google Scholar 

  19. Wilson, A., & Trumpp, A. (2006). Bone-marrow haematopoietic-stem-cell niches. Nature Reviews. Immunology, 6(2), 93–106.

    Article  PubMed  CAS  Google Scholar 

  20. Heissig, B., Hattori, K., Dias, S., Friedrich, M., Ferris, B., Hackett, N. R., et al. (2002). Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell, 109(5), 625–637.

    Article  PubMed  CAS  Google Scholar 

  21. Lapidot, T., & Petit, I. (2002). Current understanding of stem cell mobilization: The roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Experimental Hematology, 30(9), 973–981.

    Article  PubMed  CAS  Google Scholar 

  22. Lapidot, T., Dar, A., & Kollet, O. (2005). How do stem cells find their way home? Blood, 106(6), 1901–1910.

    Article  PubMed  CAS  Google Scholar 

  23. Wynn, R. F., Hart, C. A., Corradi-Perini, C., O’Neill, L., Evans, C. A., Wraith, J. E., et al. (2004). A small proportion of mesenchymal stem cells strongly express functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood, 104, 2643–2645.

    Article  PubMed  CAS  Google Scholar 

  24. Sordi, V., Malosio, M. L., Marchesi, F., Mercalli, A., Melzi, R., Giordano, T., et al. (2005). Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood, 106, 419–427.

    Article  PubMed  CAS  Google Scholar 

  25. Von Luttichau, I., Notohamiprodjo, M., Wechselberger, A., Peters, C., Henger, A., Seliger, C., et al. (2005). Human adult CD34- progenitor cells functionally express the chemokine receptors CCR1, CCR4, CCR7, CXCR5, and CCR10 but not CXCR4. Stem Cells Development, 14(3), 329–336.

    Article  Google Scholar 

  26. Son, B. R., Marquez-Curtis, L. A., Kucia, M., Wysoczynski, M., Turner, A. R., Ratajczak, J., et al. (2006). Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells, 24(5), 1254–1264.

    Article  PubMed  CAS  Google Scholar 

  27. Reya, T., & Clevers H. (2005). Wnt signalling in stem cells and cancer. Nature, 434(7035), 843–850.

    Article  PubMed  CAS  Google Scholar 

  28. Moon, R. T., Kohn, A. D., De Ferrari, G. V., & Kaykas, A. (2004). WNT and beta-catenin signalling: Diseases and therapies. Nature Reviews. Genetics, 5(9), 691–701.

    Article  PubMed  CAS  Google Scholar 

  29. Mikels, A. J., & Nusse, R. (2006). Wnts as ligands: Processing, secretion and reception. Oncogene, 25(57), 7461–7468.

    Article  PubMed  CAS  Google Scholar 

  30. Nelson, W. J., & Nusse, R. (2004). Convergence of Wnt, beta-catenin, and cadherin pathways. Science, 303(5663), 1483–1487.

    Article  PubMed  CAS  Google Scholar 

  31. Logan, C. Y., & Nusse, R. (2004). The Wnt signaling pathway in development and disease. Annual Review of Cell and Developmental Biology, 20, 781–810.

    Article  PubMed  CAS  Google Scholar 

  32. Kimelman, D., & Xu, W. (2006). beta-catenin destruction complex: Insights and questions from a structural perspective. Oncogene, 25(57), 7482–7491.

    Article  PubMed  CAS  Google Scholar 

  33. Arce, L., Yokoyama, N. N., & Waterman, M. L. (2006). Diversity of LEF/TCF action in development and disease. Oncogene, 25(57), 7492–7504.

    Article  PubMed  CAS  Google Scholar 

  34. Kawano, Y., & Kypta, R. (2003). Secreted antagonists of the Wnt signalling pathway. Journal of Cell Science, 116(Pt 13), 2627–2634.

    Article  PubMed  CAS  Google Scholar 

  35. Niehrs, C. (2006). Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene, 25(57), 7469–7481.

    Article  PubMed  CAS  Google Scholar 

  36. He, X., Semenov, M., Tamai, K., & Zeng, X. (2004). LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: Arrows point the way. Development, 131(8), 1663–1677.

    Article  PubMed  CAS  Google Scholar 

  37. Cadigan, K. M., & Nusse, R. (1997). Wnt signaling: A common theme in animal development. Genes & Development, 11(24), 3286–3305.

    CAS  Google Scholar 

  38. Jamora, C., & Fuchs, E. (2002). Intercellular adhesion, signalling and the cytoskeleton. Nature Cell Biology, 4(4), E101–E108.

    Article  PubMed  CAS  Google Scholar 

  39. Schambony, A., Kunz, M., & Gradl, D. (2004). Cross-regulation of Wnt signaling and cell adhesion. Differentiation, 72(7), 307–318.

    Article  PubMed  CAS  Google Scholar 

  40. Brembeck, F. H., Rosario, M., & Birchmeier, W. (2006). Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Current Opinion in Genetics & Development, 16(1), 51–59.

    Article  CAS  Google Scholar 

  41. Beachy, P. A., Karhadkar, S. S., & Berman, D. M. (2004). Tissue repair and stem cell renewal in carcinogenesis. Nature, 432(7015), 324–331.

    Article  PubMed  CAS  Google Scholar 

  42. Barker, N., & Clevers, H. (2006). Mining the Wnt pathway for cancer therapeutics. Nature Reviews. Drug Discovery, 5(12), 997–1014.

    Article  PubMed  CAS  Google Scholar 

  43. Pardal, R., Clarke, M. F., & Morrison, S. J. (2003). Applying the principles of stem-cell biology to cancer. Nature Reviews. Cancer, 3(12), 895–902.

    Article  PubMed  CAS  Google Scholar 

  44. Fukui, T., Kondo, M., Ito, G., Maeda, O., Sato, N., Yoshioka, H., et al. (2005). Transcriptional silencing of secreted frizzled related protein 1 (SFRP 1) by promoter hypermethylation in non-small-cell lung cancer. Oncogene, 24(41), 6323–6327.

    Article  PubMed  CAS  Google Scholar 

  45. Mazieres, J., He, B., You, L., Xu, Z., Lee, A. Y., Mikami, I., et al. (2004). Wnt inhibitory factor-1 is silenced by promoter hypermethylation in human lung cancer. Cancer Research, 64(14), 4717–4720.

    Article  PubMed  CAS  Google Scholar 

  46. You, L., Kim, J., He, B., Xu, Z., McCormick, F., & Jablons, D. M. (2006). Wnt-1 signal as a potential cancer therapeutic target. Drug News & Perspectives, 19(1), 27–31.

    Article  CAS  Google Scholar 

  47. Kirikoshi, H., Sekihara, H., & Katoh, M. (2001). Up-regulation of Frizzled-7 (FZD7) in human gastric cancer. International Journal of Oncology, 19(1), 111–115.

    PubMed  CAS  Google Scholar 

  48. Uematsu, K., He, B., You, L., Xu, Z., McCormick, F., & Jablons, D. M. (2003). Activation of the Wnt pathway in non small cell lung cancer: Evidence of dishevelled overexpression. Oncogene, 22(46), 7218–7221.

    Article  PubMed  CAS  Google Scholar 

  49. Brabletz, T., Jung, A., Spaderna, S., Hlubek, F., & Kirchner, T. (2005). Opinion: Migrating cancer stem cells—An integrated concept of malignant tumour progression. Nature Reviews. Cancer, 5(9), 744–749.

    Article  PubMed  CAS  Google Scholar 

  50. Tse, J. C., & Kalluri, R. (2007). Mechanisms of metastasis: Epithelial-to-mesenchymal transition and contribution of tumor microenvironment. Journal of Cellular Biochemistry, in press.

  51. Brabletz, T., Jung, A., Reu, S., Porzner, M., Hlubek, F., Kunz-Schughart, L. A., et al. (2001). Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10356–10361.

    Article  PubMed  CAS  Google Scholar 

  52. Brabletz, T., Hlubek, F., Spaderna, S., Schmalhofer, O., Hiendlmeyer, E., Jung, A., et al. (2005). Invasion and metastasis in colorectal cancer: Epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs, 179(1–2), 56–65.

    Article  PubMed  CAS  Google Scholar 

  53. Gupta, G. P., & Massague, J. (2006). Cancer metastasis: Building a framework. Cell, 127(4), 679–695.

    Article  PubMed  CAS  Google Scholar 

  54. Korinek, V., Barker, N., Moerer, P., Van Donselaar, E., Huls, G., Peters, P. J., et al. (1998). Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genetics, 19(4), 379–383.

    Article  PubMed  CAS  Google Scholar 

  55. Willert, K., Brown, J. D., Danenberg, E., Duncan, A. W., Weissman, I. L., Reya, T., et al. (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 423(6938), 448–452.

    Article  PubMed  CAS  Google Scholar 

  56. Reya, T., Duncan, A. W., Ailles, L., Domen, J., Scherer, D. C., Willert, K., et al. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 423(6938), 409–414.

    Article  PubMed  CAS  Google Scholar 

  57. Rattis, F. M., Voermans, C., & Reya, T. (2004). Wnt signaling in the stem cell niche. Current Opinion in Hematology, 11(2), 88–94.

    Article  PubMed  CAS  Google Scholar 

  58. De Boer, J., Wang, H. J., & Van Blitterswijk, C. (2004). Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Engineering, 10(3–4), 393–401.

    Google Scholar 

  59. Boland, G. M., Perkins, G., Hall, D. J., & Tuan, R. S. (2004). Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. Journal of Cellular Biochemistry, 93(6), 1210–1230.

    Article  PubMed  CAS  Google Scholar 

  60. Ross, S. E., Hemati, N., Longo, K. A., Bennett, C. N., Lucas, P. C., Erickson, R. L., et al. (2000). Inhibition of adipogenesis by Wnt signaling. Science, 289(5481), 950–953.

    Article  PubMed  CAS  Google Scholar 

  61. Derfoul, A., Carlberg, L., Tuan, R. S., & Hall, D. J. (2004). Differential regulation of osteogenic marker gene expression by Wnt-3a in embryonic mesenchymal multipotential progenitor cells. Differentiation, 72(5), 209–223.

    Article  PubMed  CAS  Google Scholar 

  62. Gregory, C. A., Singh, H., Perry, A. S., & Prockop, D. J. (2003). The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. Journal of Biological Chemistry, 278(30), 28067–28078.

    Article  PubMed  CAS  Google Scholar 

  63. Neth, P., Ciccarella, M., Egea, V., Hoelters, J., Jochum, M., & Ries, C. (2006). Wnt signaling regulates the invasion capacity of human mesenchymal stem cells. Stem Cells, 24(8), 1892–1903.

    Article  PubMed  CAS  Google Scholar 

  64. Tetsu, O., & McCormick, F. (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature, 398(6726), 422–426.

    Article  PubMed  CAS  Google Scholar 

  65. Liotta, L. A. (1984). Tumor invasion and metastases: Role of the basement membrane. Warner-Lambert Parke-Davis Award lecture. American Journal of Pathology, 117(3), 339–348.

    PubMed  CAS  Google Scholar 

  66. Albini, A., Benelli, R., Noonan, D. M., & Brigati, C. (2004). The “chemoinvasion assay”: A tool to study tumor and endothelial cell invasion of basement membranes. International Journal of Developmental Biology, 48(5–6), 563–571.

    Article  PubMed  CAS  Google Scholar 

  67. Ries, C., Egea, V., Karow, M., Kolb, H., Jochum, M., & Neth, P. (2007). MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: Differential regulation by inflammatory cytokines. Blood, 109(9), 4055–4063.

    Google Scholar 

  68. Klein, P. S., & Melton, D. A. (1996). A molecular mechanism for the effect of lithium on development. Proceedings of the National Academy of Sciences of the United States of America, 93(16), 8455–8459.

    Article  PubMed  CAS  Google Scholar 

  69. Hedgepeth, C. M., Conrad, L. J., Zhang, J., Huang, H. C., Lee, V. M., & Klein, P. S. (1997). Activation of the Wnt signaling pathway: A molecular mechanism for lithium action. Developmental Biology, 185(1), 82–91.

    Article  CAS  Google Scholar 

  70. Qiang, Y. W., Walsh, K., Yao, L., Kedei, N., Blumberg, P. M., Rubin, J. S., et al. (2005). Wnts induce migration/invasion of myeloma plasma cells. Blood, 106, 1786–1793.

    Article  PubMed  CAS  Google Scholar 

  71. Bienz, M., & Clevers, H. (2000). Linking colorectal cancer to Wnt signaling. Cell, 103(2), 311–320.

    Article  PubMed  CAS  Google Scholar 

  72. Pollheimer, J., Loregger, T., Sonderegger, S., Saleh, L., Bauer, S., Bilbam, M., et al. (2006). Activation of the canonical wingless/T-cell factor signaling pathway promotes invasive differentiation of human trophoblast. American Journal of Pathology, 168(4), 1134–1147.

    Article  PubMed  CAS  Google Scholar 

  73. Chisholm, A. D. (2006). Gastrulation: Wnts Signal constriction. Current Biology, 16(20), R874–R876.

    Article  PubMed  CAS  Google Scholar 

  74. Liebner, S., Cattelino, A., Gallini, R., Rudini, N., Iurlaro, M., Piccolo, S., et al. (2004). Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. Journal of Cell Biology, 166(3), 359–367.

    Article  PubMed  CAS  Google Scholar 

  75. Hoelters, J., Ciccarella, M., Drechsel, M., Geissler, C., Gulkan, H., Bocker, W., et al. (2005). Nonviral genetic modification mediates effective transgene expression and functional RNA interference in human mesenchymal stem cells. Journal of Gene Medicine, 7(6), 718–728.

    Article  PubMed  CAS  Google Scholar 

  76. Verma, U. N., Surabhi, R. M., Schmaltieg, A., Becerra, C., & Gaynor, R. B. (2003). Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clinical Cancer Research, 9(4), 1291–1300.

    PubMed  CAS  Google Scholar 

  77. Massague, J. (2004). G1 cell-cycle control and cancer. Nature, 432(7015), 298–306.

    Article  PubMed  CAS  Google Scholar 

  78. Etheridge, S. L., Spencer, G. J., Heath, D. J., & Genever, P. G. (2004). Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells. Stem Cells, 22(5), 849–860.

    Article  PubMed  CAS  Google Scholar 

  79. Weeraratna, A. T. (2005). A Wnt-er Wonderland—The complexity of Wnt signaling in melanoma. Cancer Metastasis Reviews, 24(2), 237–250.

    Article  PubMed  CAS  Google Scholar 

  80. Schweizer, L., & Varmus, H. (2003). Wnt/Wingless signaling through beta-catenin requires the function of both LRP/Arrow and frizzled classes of receptors. BMC Cell Biology, 4(1), 4.

    Article  PubMed  Google Scholar 

  81. Cong, F., Schweizer, L., & Varmus, H. (2004). Wnt signals across the plasma membrane to activate the beta-catenin pathway by forming oligomers containing its receptors, Frizzled and LRP. Development, 131(20), 5103–5115.

    Article  PubMed  CAS  Google Scholar 

  82. Kikuchi, A., Yamamoto, H., & Kishida, S. (2006). Multiplicity of the interactions of Wnt proteins and their receptors. Cell Signal, 19(4), 659–671.

    Article  PubMed  CAS  Google Scholar 

  83. Smalley, M. J., & Dale, T. C. (1999). Wnt signalling in mammalian development and cancer. Cancer Metastasis Reviews, 18(2), 215–230.

    Article  PubMed  CAS  Google Scholar 

  84. Chen, G., Shukeir, N., Potti, A., Sircar, K., Aprikian, A., Goltzman, D., et al. (2004). Up-regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma: Potential pathogenetic and prognostic implications. Cancer, 101(6), 1345–1356.

    Article  PubMed  CAS  Google Scholar 

  85. Hoang, B. H., Kubo, T., Healey, J. H., Yang, R., Nathan, S. S., Kolb, E. A., et al. (2004). Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-beta-catenin pathway. Cancer Research, 64(8), 2734–2739.

    Article  PubMed  CAS  Google Scholar 

  86. Hoang, B. H., Kubo, T., Healey, J. H., Sowers, R., Mazza, B., Yang, R., et al. (2004). Expression of LDL receptor-related protein 5 (LRP5) as a novel marker for disease progression in high-grade osteosarcoma. International Journal of Cancer, 109(1), 106–111.

    Article  CAS  Google Scholar 

  87. Zi, X., Guo, Y., Simoneau, A. R., Hope, C., Xie, J., Holcombe, R. F., et al. (2005). Expression of Frzb/secreted Frizzled-related protein 3, a secreted Wnt antagonist, in human androgen-independent prostate cancer PC-3 cells suppresses tumor growth and cellular invasiveness. Cancer Research, 65(21), 9762–9770.

    Article  PubMed  CAS  Google Scholar 

  88. Hiendlmeyer, E., Regus, S., Wassermann, S., Hlubek, F., Haynl, A., Dimmler, A., et al. (2004). Beta-catenin up-regulates the expression of the urokinase plasminogen activator in human colorectal tumors. Cancer Research, 64(4), 1209–1214.

    Article  PubMed  CAS  Google Scholar 

  89. Mann, B., Gelos, M., Siedow, A., Hanski, M. L., Gretchev, A., Ilyas, M., et al. (1999). Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proceedings of the National Academy of Sciences of the United States of America, 96(4), 1603–1608.

    Article  PubMed  CAS  Google Scholar 

  90. Wielenga, V. J., Smits, R., Korinek, V., Smit, L., Kielman, M., Fodde, R., et al. (1999). Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. American Journal of Pathology, 154(2), 515–523.

    PubMed  CAS  Google Scholar 

  91. Brabletz, T., Jung, A., Dag, S., Hlubek, F., & Kirchner, T. (1999). Beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. American Journal of Pathology, 155(4), 1033–1038.

    PubMed  CAS  Google Scholar 

  92. Takahashi, M., Tsunoda, T., Seiki, M., Nakamura, Y., & Furukawa, Y. (2002). Identification of membrane-type matrix metalloproteinase-1 as a target of the beta-catenin/Tcf4 complex in human colorectal cancers. Oncogene, 21(38), 5861–5867.

    Article  PubMed  CAS  Google Scholar 

  93. Nagase, H., & Woessner, J. F., Jr. (1999). Matrix metalloproteinases. Journal of Biological Chemistry, 274(31), 21491–21494.

    Article  PubMed  CAS  Google Scholar 

  94. Itoh, Y., & Seiki, M. (2006). MT1-MMP: A potent modifier of pericellular microenvironment. Journal of Cellular Physiology, 206(1), 1–8.

    Article  PubMed  CAS  Google Scholar 

  95. Itoh, Y., Takamura, A., Ito, N., Maru, Y., Sato, H., Suenaga, N., et al. (2001). Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. EMBO Journal, 20(17), 4782–4793.

    Article  PubMed  CAS  Google Scholar 

  96. Knauper, V., Will, H., Lopez-Otin, C., Smith, B., Atkinson, S. J., Stanton, H., et al. (1996). Cellular mechanisms for human procolagenase-3 (MMP-13) activation. Evidence that MT1-MMP (MMP-14) and gelatinase a (MMP-2) are able to generate active enzyme. Journal of Biological Chemistry, 271(29), 17124–17131.

    Article  PubMed  CAS  Google Scholar 

  97. Seiki, M. (2002). The cell surface: The stage for matrix metalloproteinase regulation of migration. Current Opinion in Cell Biology, 14(5), 624–632.

    Article  PubMed  CAS  Google Scholar 

  98. Bartolome, R. A., Molina-Ortiz, I., Samaniego, R., Sanchez-Mateos, P., Bustelo, X. R., & Teixido, J. (2006). Activation of Vav/Rho GTPase signaling by CXCL12 controls membrane-type matrix metalloproteinase-dependent melanoma cell invasion. Cancer Research, 66(1), 248–258.

    Article  PubMed  CAS  Google Scholar 

  99. Tam, E. M., Morrison, C. J., Wu, Y. I., Stack, M. S., & Overall, C. M. (2004). Membrane protease proteomics: Isotope-coded affinity tag MS identification of undescribed MT1-matrix metalloproteinase substrates. Proceedings of the National Academy of Sciences of the United States of America, 101(18), 6917–6922.

    Article  PubMed  CAS  Google Scholar 

  100. Efron, P. A., & Moldawer, L. L. (2004). Cytokines and wound healing: The role of cytokine and anticytokine therapy in the repair response. Journal of Burn Care & Rehabilitation, 25(2), 149–160.

    Article  Google Scholar 

  101. Westermarck, J., & Kahari, V. M. (1999). Regulation of matrix metalloproteinase expression in tumor invasion. FASEB Journal, 13(8), 781–792.

    PubMed  CAS  Google Scholar 

  102. Overall, C. M., Wrana, J. L., & Sodek, J. (1991). Transcriptional and post-transcriptional regulation of 72-kDa gelatinase/type IV collagenase by transforming growth factor-beta 1 in human fibroblasts. Comparisons with collagenase and tissue inhibitor of matrix metalloproteinase gene expression. Journal of Biological Chemistry, 266(21), 14064–14071.

    PubMed  CAS  Google Scholar 

  103. Ries, C., Kolb, H., & Petrides, P. E. (1994). Regulation of 92-kD gelatinase release in HL-60 leukemia cells: Tumor necrosis factor-alpha as an autocrine stimulus for basal- and phorbol ester-induced secretion. Blood, 83(12), 3638–3646.

    PubMed  CAS  Google Scholar 

  104. Ries, C., & Petrides, P. E. (1995). Cytokine regulation of matrix metalloproteinase activity and its regulatory dysfunction in disease. Biological Chemistry Hoppe-Seyler, 376(6), 345–355.

    PubMed  CAS  Google Scholar 

  105. Dar, A., Kollet, O., & Lapidot, T. (2006). Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Experimental Hematology, 34(8), 967–975.

    Article  PubMed  CAS  Google Scholar 

  106. Charo, I. F., & Ransohoff, R. M. (2006). The many roles of chemokines and chemokine receptors in inflammation. New England Journal of Medicine, 354(6), 610–621.

    Article  PubMed  CAS  Google Scholar 

  107. McQuibban, G. A., Butler, G. S., Gong, J. H., Bendall, L., Power, C., Clark-Lewis, I., et al. (2001). Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. Journal of Biological Chemistry, 276(47), 43503–43508.

    Article  PubMed  CAS  Google Scholar 

  108. Itoh, Y., & Seiki, M. (2004). MT1-MMP: An enzyme with multidimensional regulation. Trends in Biochemical Sciences, 29(6), 285–289.

    Article  PubMed  CAS  Google Scholar 

  109. Jian, H., Shen, X., Liu, I., Semenov, M., He, X., & Wang, X. F. (2006). Smad3-dependent nuclear translocation of beta-catenin is required for TGF-beta1-induced proliferation of bone marrow-derived adult human mesenchymal stem cells. Genes & Development, 20(6), 666–674.

    Article  CAS  Google Scholar 

  110. Yu, Q., & Stamenkovic, I. (2000). Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes & Development, 14(2), 163–176.

    Google Scholar 

  111. Houghton, J., Stoicov, C., Nomura, S., Rogers, A. B., Carlson, J., Li, H., et al. (2004). Gastric cancer originating from bone marrow-derived cells. Science, 306(5701), 1568–1571.

    Article  PubMed  CAS  Google Scholar 

  112. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., & Brivanlou, A. H. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nature Medicine, 10(1), 55–63.

    Article  PubMed  CAS  Google Scholar 

  113. Trowbridge, J. J., Xenocostas, A., Moon, R. T., & Bhatia, M. (2006). Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nature Medicine, 12(1), 89–98.

    Article  PubMed  CAS  Google Scholar 

  114. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860–867.

    Article  PubMed  CAS  Google Scholar 

  115. Lepourcelet, M., Chen, Y. N., France, D. S., Wang, H., Crews, P., Peterson, F., et al. (2004). Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell, 5(1), 91–102.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Dr. Edwin Fink for critical reading of the manuscript. Relevant research in the laboratories was funded by grants from the Förderprogramm für Forschung und Lehre of the Ludwig-Maximilians-University of Munich (P. Neth), from the Wilhelm Sander-Stiftung (2002.122.1) and by a contract from the German Federal Ministry of Defense (M/SAB1/5/A001) (C. Ries/M. Jochum).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Neth.

Additional information

P. Neth and C. Ries contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neth, P., Ries, C., Karow, M. et al. The Wnt Signal Transduction Pathway in Stem Cells and Cancer Cells: Influence on Cellular Invasion. Stem Cell Rev 3, 18–29 (2007). https://doi.org/10.1007/s12015-007-0001-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-007-0001-y

Keywords

Navigation