Skip to main content

Advertisement

Log in

Adipose Derived Stem Cells and Smooth Muscle Cells: Implications for Regenerative Medicine

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The treatment of chronic wounds and other damaged tissues and organs remains a difficult task, in spite of greater adherence to recognised standards of care and a better understanding of pathophysiologic principles. Adipose derived stem cells (ADSCs), with their proliferative and impressive differentiation potential, may be used in the future in autologous cell therapy or grafting to replace damaged tissues. At this point in time, transplanted tissues are often rejected by the body. Autologous grafting would eliminate this problem. ADSCs are able to differentiate into a number of cells in vitro, for example smooth muscle cells (SMCs), when treated with lineage specific factors. SMCs play a key role in physiology and pathology as they form the principle layer of all SMC tissues. Smooth muscle biopsies are often impractical and morbid, and often lead to a low cell harvest. It has also been shown that SMCs derived from a diseased organ can lead to abnormal cells. Therefore, there is a great need for alternative sources of healthy SMCs. The use of ADSCs for cell-based tissue engineering (TE) represents a promising alternative for smooth muscle repair. This review discusses the potential uses of ADSCs and SMCs in regenerative medicine, and the potential of ADSCs to be differentiated into functional SMCs for TE and regenerative cellular therapies to repair diseased organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2

Similar content being viewed by others

Abbreviations

ADSCs:

Adipose derived stem cells

BAT:

Brown adipose tissue

BDNF:

Brain derived neurotrophic factor

BMSCs:

Bone marrow stem cells

BM-SMPC:

Bone marrow-derived smooth muscle progenitor cells

CBFA-1:

Core binding factor alpha subunit 1

CNS:

Central nervous system

DMD:

Duchenne muscular dystrophy

ECM:

Extracellular matrix

FM:

Fusion media

GFAP:

Glial Fibrillary Acidic Protein

GFP:

Green fluorescent protein

hADSCs:

Human ADSCs

HIBS:

Hardening injectable bone substitute

ICH:

Intracerebral haemorrhage

IL-5:

Interleukin-5

MAP2:

Microtubule-associated protein 2

MCAo:

Middle cerebral artery occlusion

MHC:

Myosin heavy chain

MyoD:

Myogenic determination

OECs:

Olfactory ensheathing cells

PLA:

Processed lipoaspirate

PDGF BB:

Platelet-derived growth factor BB

RT-PCR:

Reverse Transcriptase polymerase chain reaction

SIS:

Small intestine submucosa

SMCs:

Smooth muscle cells

SMα-actin:

Smooth muscle α-actin

SMIM:

Smooth muscle induction medium

SM-MHC:

Smooth muscle myosin heavy chain

SVF:

Stromal vascular fraction

TE:

Tissue engineering

TGF β1:

Transforming growth factor beta 1

References

  1. Gimble, J. M., Katz, A. J., & Bunnell, B. A. (2007). Adipose-derived stem cells for regenerative medicine. Circulation Research, 100, 1249–1260.

    Article  PubMed  CAS  Google Scholar 

  2. Sandor, G. K. B., & Suuronen, R. (2008). Combining adipose-derived stem cells, resorbable scaffolds and growth factors: an overview of tissue engineering. JCDA, 74(2), 167–170.

    PubMed  Google Scholar 

  3. Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Furtell, J. W., Katz, A. J., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7(2), 211–228.

    Article  PubMed  CAS  Google Scholar 

  4. Kim, J. M., Lee, S., Chu, K., Jung, K., Song, E., Kim, S., et al. (2007). Systemic transplantation of human adipose stem cells attenuated cerebral inflammation and degeneration in a hemorrhagic stroke model. Brain Research, 1183, 43–50.

    Article  PubMed  CAS  Google Scholar 

  5. Strem, B. M., Hicok, K. C., Zhu, M., Wulur, I., Alfonso, Z., Schreiber, R. E., et al. (2005). Multipotential differentiation of adipose tissue-derived stem cells. Keio Journal of Medicine, 54(3), 132–141.

    Article  PubMed  CAS  Google Scholar 

  6. Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13, 4279–4295.

    Article  PubMed  CAS  Google Scholar 

  7. Ogawa, R. (2006). The importance of adipose-derived stem cells and vascularised tissue regeneration in the field of tissue transplantation. Current Stem Cell Research and Therapy, 1, 13–20.

    Article  PubMed  CAS  Google Scholar 

  8. Fraser, J. K., Wulur, I., Alfonso, Z., & Hedrick, M. H. (2006). Fat tissue: an underappreciated source of stem cells for biotechnology. TRENDS in Biotechnology, 24(4), 150–154.

    Article  PubMed  CAS  Google Scholar 

  9. Schäffler, A., & Büchler, C. (2008). Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies. Stem Cells, 25, 818–827.

    Article  CAS  Google Scholar 

  10. Rodriguez, L. V., Alfonso, Z., Zhang, R., Leung, J., Wu, B., & Ignarro, L. J. (2006). Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proceeding of the National Academy of Sciences, 103(32), 12167–12172.

    Article  CAS  Google Scholar 

  11. Wong, J. Z., Woodcock-Mitchell, J., Mitchell, J., Rippetoe, P., White, S., Absher, M., et al. (1998). Smooth muscle actin and myosin expression in cultured airway smooth muscle cells. AJP-Lung Cellular & Molecular Physiology, 274, 786–792.

    Google Scholar 

  12. Kang, S. K., Lee, D. H., Bae, Y. C., Kim, H. K., Baik, S. Y., & Jung, J. S. (2003). Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Experimental Neurology, 183, 355–366.

    Article  PubMed  CAS  Google Scholar 

  13. Wang, B., Han, J., Gao, Y., Xiao, Z., Chen, B., Wang, X., et al. (2007). The differentiation of rat adipose-derived stem cells into OEC-like cells on collagen scaffolds by co-culturing with OECs. Neuroscience Letters, 421, 191–196.

    Article  PubMed  CAS  Google Scholar 

  14. Wu, K., Liu, Y. L., Cui, B., & Han, Z. (2006). Application of stem cells for cardiovascular grafts tissue engineering. Transplant Immunology, 16, 1–7.

    Article  PubMed  CAS  Google Scholar 

  15. Bai, X., Pinkernell, K., Song, Y., Nabzdyk, C., Reisser, J., & Alt, E. (2006). Genetically selected stem cells from human adipose tissue express cardiac markers. Biochemical and Biophysical Research Communications, 353, 665–671.

    Article  PubMed  CAS  Google Scholar 

  16. Sanz-Ruiz, R., Fernandez Santos, M. E., Dominguez Munoa, M., Ludwig Martin, I., Parma, R., Sanchez Fernandez, P. L., et al. (2008). Adipose tissue-derived stem cells: the friendly side of a classic cardiovascular foe. Journal of Cardiovascular Translational Research, 1(1), 55–63.

    Article  Google Scholar 

  17. Yamada, Y., Wang, X., Yokayama, S., Fukuda, N., & Takakura, N. (2006). Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium. Biochemical and Biophysical Research Communications, 342, 662–670.

    Article  PubMed  CAS  Google Scholar 

  18. Valina, C., Pinkernell, K., Song, Y., Bai, X., Sadat, S., Campeau, R. J., et al. (2007). Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. European Heart Journal, 28, 2667–2677.

    Article  PubMed  Google Scholar 

  19. Elabd, C., Chiellini, C., Massoudi, A., Cochet, O., Zaragosi, L., Trojani, C., et al. (2007). Human adipose tissue-derived multipotent stem cells differentiate in vitro and in vivo into osteocyte-like cells. Biochemical and Biophysical Research Communications, 361, 342–348.

    Article  PubMed  CAS  Google Scholar 

  20. Vieira, N. M., Brandalise, V., Zucconi, E., Jazedje, T., Secco, M., Nunes, V. A., et al. (2008). Human multipotent adipose derived stem cells restore dystrophin expression of Duchenne skeletal muscle cells in vitro. Biology of the Cell, 100(4), 231–241.

    Article  PubMed  CAS  Google Scholar 

  21. Webb, R. C. (2003). Smooth muscle contraction and relaxation. Advances in Physiology Education, 27(4), 201–206.

    PubMed  Google Scholar 

  22. van Eys, G. J. J. M., Voller, M. C. W., Timmer, E. D. J., Wehrens, X. H. T., Small, J. V., Schalken, J. A., et al. (1997). Smoothelin expression characteristics development of a smooth muscle cell in vitro system and identification of a vascular varient. Cell Structure and Function, 22, 65–72.

    Article  PubMed  Google Scholar 

  23. Suzuki, T., Nagai, R., & Yazaki, Y. (1998). Mechanisms of transcriptional regulation of gene expression in smooth muscle cells. Circulation Research, 82, 1238–1242.

    PubMed  CAS  Google Scholar 

  24. Halayko, A. J., Camoretti-Mercado, B., Forsythe, S. M., Vieria, J. E., Mitchell, R. W., Wylam, M. E., et al. (1999). Divergent differentiation paths in airway smooth muscle culture: induction of functionally contractile myocytes. American Physiology Society, 276, 197–206.

    Google Scholar 

  25. Hollrigel, A., Puz, S., Al-Dubai, H., Kim, J. U., Capetanaki, Y., & Weitzer, G. (2002). Amino-terminally truncated desmin rescues fusion of des-/- myoblasts but negatively affects cardioyogenesis and smooth muscle development. FEBS Letters, 523, 229–233.

    Article  Google Scholar 

  26. van Eys, G. J., Niessen, P. M., & Rensen, S. S. (2007). Smoothelin in vascular smooth muscle cells. TCM, 17(1), 26–30.

    PubMed  Google Scholar 

  27. Halayko, A. J., & Solway, J. (2001). Molecular mechanisms of phenotypic plasticity in smooth muscle cells. Journal of Applied Physiology, 90, 358–368.

    PubMed  CAS  Google Scholar 

  28. Ma, X., Wang, Y., & Stephens, N. L. (1998). Serum deprivation induces a unique hypercontractile phenotype of cultured smooth muscle cells. AJP-Cell Physiology, 274, 1206–1214.

    Google Scholar 

  29. Woodrum, D. A., & Brophy, C. M. (2001). The paradox of smooth muscle physiology. Molecular and Cellular Endocrinology, 177, 135–143.

    Article  PubMed  CAS  Google Scholar 

  30. Owens, G. K., Kumar, M. S., & Wamhoff, B. R. (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiological Reviews, 84, 767–801.

    Article  PubMed  CAS  Google Scholar 

  31. Sinha, S., Wamhoff, B. R., Hoofnagle, M. H., Thomas, J., Neppi, R. L., Deering, T., et al. (2008). Assessment of contractility of purified smooth muscle cells derived from embryonic stem cells. Stem Cells, 24, 1678–1688.

    Article  Google Scholar 

  32. Mayr, M., & Xu, Q. (2001). Smooth muscle cell apoptosis in arteriosclerosis. Experimental Gerontology, 36, 969–987.

    Article  PubMed  CAS  Google Scholar 

  33. Tukaj, C., Bohdanowicz, J., & Kubasik-Juraniec, J. (2004). The growth and differentiation of aortal smooth muscle cells with microtubule reorganisation—an in vitro study. Folia Morphologiica, 63(1), 51–57.

    Google Scholar 

  34. Liu, J. Y., Swartz, D. D., Peng, H. F., Gugino, S. F., Russell, J. A., & Andreadis, S. T. (2007). Functional tissue-engineered blood vessels from bone marrow progenitor cells. Circulation Research, 75, 618–628.

    CAS  Google Scholar 

  35. Wong, J. W., Velasco, A., Rajagopalan, P., & Pham, Q. (2003). Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir, 19, 1908–1913.

    Article  CAS  Google Scholar 

  36. Krenning, G., Moonen, J. R. A. J., van Luyn, M. J. A., & Harmsen, M. C. (2008). Vascular smooth muscle cells for use in vascular tissue engineering obtained by endothelial-to-mesenchymal transdifferentiation (EnMT) on collagen matrices. Biomaterials, 29, 3703–3711.

    Article  PubMed  CAS  Google Scholar 

  37. Campbell, J. H., Walker, P., Chue, W., Daly, C., Cong, H., Xiang, L., et al. (2004). Body cavities as bioreactors to grow arteries. International Congress Series, 1262, 118–121.

    Article  Google Scholar 

  38. Hirst, S. L. (1996). Airway smooth muscle cell culture: application to studies of airway wall remodelling and phenotype plasticity in asthma. European Respiratory Journal, 9, 808–820.

    Article  PubMed  CAS  Google Scholar 

  39. James, A., & Carroll, N. (2000). Airway smooth muscle in health and disease; methods of measurement and relation to function. European Respiratory Journal, 15, 782–789.

    Article  PubMed  CAS  Google Scholar 

  40. Chakir, J., Pagé, N., Hamid, Q., Laviolette, M., Boulet, L. P., & Rouabhia, M. (2000). Bronchial mucosa produced by tissue engineering: a new tool to study cellular interactions in asthma. Journal of Allergy and Clinical Immunology, 107(1), 36–40.

    Article  Google Scholar 

  41. Atala, A., Bauer, S., Soker, S., Yoo, J. J., & Retik, A. B. (2006). Tissue-engineered autologous bladders for patients needing cytoplasty. Lancet, 367, 1241–1246.

    Article  PubMed  Google Scholar 

  42. Jack, G. S., Zhang, R., Lee, M., Xu, Y., Wu, B. M., & Rodriguez, L. V. (2009). Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite. Biomaterials, 30, 3259–3270.

    Article  PubMed  CAS  Google Scholar 

  43. Sievert, K., Amend, B., & Stenzl, A. (2007). Tissue engineering for the lower urinary tract: a review of a state of the art approach. European Urology, 52, 1580–1589.

    Article  PubMed  Google Scholar 

  44. Baumert, H., Simon, P., Hekmati, M., Fromont, G., Levy, M., Balaton, A., et al. (2007). Development of a seeded scaffold in the great omentum: feasibility of an in vivo bioreactor for bladder tissue engineering. European Urology, 52, 884–892.

    Article  PubMed  Google Scholar 

  45. Kima, Y. M., Jeona, E. S., Kima, M. R., Jhob, S. K., Ryuc, S. W., & Kima, J. H. (2008). Angiotensin II-induced differentiation of adipose tissue-derived mesenchymal stem cells to smooth muscle-like cells. The International Journal of Biochemistry & Cell Biology, 40, 2482–2491.

    Article  CAS  Google Scholar 

  46. Yang, P., Yin, S., Cui, L., Li, H., Wu, Y., Liu, W., et al. (2008). Experiment of adipose derived stem cells induced into smooth muscle cells. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 22(4), 481–486.

    PubMed  Google Scholar 

  47. Ringe, J., Kaps, C., Burmester, G., & Sittinger, M. (2002). Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften, 89, 338–351.

    Article  PubMed  CAS  Google Scholar 

  48. Moore, T. J. (2007). Stem cell Q and A—an introduction to stem cells and their role in scientific and medical research. Medical Technology SA, 21(1), 3–6.

    Google Scholar 

  49. Yanez, R., Lamana, L., Garcia-Castro, J., Colmenero, I., Ramirez, M., & Bueren, J. A. (2008). Adipose tissue-derived mesenchymal stem cells have in vivo immunosupressive properties applicable for the control of graft-versus-host disease. Stem Cells, 24, 2582–2591.

    Article  CAS  Google Scholar 

  50. Mvula, B., Mathope, T., Moore, T., & Abrahamse, H. (2007). The effect of low level laser therapy on adipose derived stem cells. Lasers in Medical Science, 23(3), 277–282.

    Article  PubMed  Google Scholar 

  51. Mvula, B., Moore, T. J., Abrahamse, H. (2009). Effect of low-level laser irradiation and epidermal growth factor on adult human adipose-derived stem cells. Lasers in Medical Science. doi:10.1007/s10103-008-0636-1.

  52. Dormorov, M. G., Kropp, B. P., Hurst, R. E., Cheng, E. Y., & Hsueh-Kung, L. (2007). Differentially expressed gene networks in cultured smooth muscle cells from normal and neuropathic bladder. Journal of Smooth Muscle Research, 43(2), 55–72.

    Article  Google Scholar 

  53. Lin, H. K., Cowan, R., Moore, P., Zhang, Y., Yang, Q., Jr., Peterson, J. A., et al. (2004). Characterization of neuropathic bladder smooth muscle cells in culture. Journal of Urology, 171, 1348–1352.

    Article  PubMed  Google Scholar 

Download references

Author disclosure statement

There is no conflict of interest for all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Abrahamse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Villiers, J.A., Houreld, N. & Abrahamse, H. Adipose Derived Stem Cells and Smooth Muscle Cells: Implications for Regenerative Medicine. Stem Cell Rev and Rep 5, 256–265 (2009). https://doi.org/10.1007/s12015-009-9084-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-009-9084-y

Keywords

Navigation