Skip to main content

Advertisement

Log in

Functional Characterization of Stem Cell Activity in the Mouse Mammary Gland

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Any portion of the mouse mammary gland is capable of recapitulating a clonally derived complete and functional mammary tree upon transplantation into an epithelial divested mammary fat-pad of a recipient host. As such, it is an ideal model tissue for the study somatic stem cell function. This review will outline what is known regarding the function of stem/progenitor cells in the mouse mammary gland, including how progenitor populations can be functionally defined, the evidence for and potential role of selective DNA strand segregation, and the role of the niche in maintaining and controlling stem cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Deome, K., Faulkin, L. J., Bern, H., & Blair, P. (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Research, 19, 515–520.

    PubMed  CAS  Google Scholar 

  2. Faulkin, L. J., Jr., & Deome, K. B. (1960). Regulation of growth and spacing of gland elements in the mammary fat pad of the C3H mouse. Journal of the National Cancer Institute, 24, 953–969.

    PubMed  Google Scholar 

  3. Daniel, C. W., & Deome, K. B. (1965). Growth of mouse mammary glands in vivo after monolayer culture. Science, 149, 634–636.

    Article  PubMed  CAS  Google Scholar 

  4. Daniel, C. W., Aidells, B. D., Medina, D., & Faulkin, L. J., Jr. (1975). Unlimited division potential of precancerous mouse mammary cells after spontaneous or carcinogen-induced transformation. Federation Proceedings, 34, 64–67.

    PubMed  CAS  Google Scholar 

  5. Smith, G. H., & Medina, D. (1988). A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. Journal of Cell Science, 90(Pt 1), 173–183.

    PubMed  Google Scholar 

  6. Kordon, E. C., & Smith, G. H. (1998). An entire functional mammary gland may comprise the progeny from a single cell. Development, 125, 1921–1930.

    PubMed  CAS  Google Scholar 

  7. Smith, G. H. (1996). Experimental mammary epithelial morphogenesis in an in vivo model: evidence for distinct cellular progenitors of the ductal and lobular phenotype. Breast Cancer Research and Treatment, 39, 21–31.

    Article  PubMed  CAS  Google Scholar 

  8. Kamiya, K., Gould, M. N., & Clifton, K. H. (1998). Quantitative studies of ductal versus alveolar differentiation from rat mammary clonogens. Proceedings of the Society for Experimental Biology and Medicine, 219, 217–225.

    PubMed  CAS  Google Scholar 

  9. Smith, G. H., & Boulanger, C. A. (2002). Mammary stem cell repertoire: new insights in aging epithelial populations. Mechanisms of Ageing and Development, 123, 1505–1519.

    Article  PubMed  CAS  Google Scholar 

  10. Wagner, K. U., Boulanger, C. A., Henry, M. D., Sgagias, M., Hennighausen, L., & Smith, G. H. (2002). An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development, 129, 1377–1386.

    PubMed  CAS  Google Scholar 

  11. Boulanger, C. A., Wagner, K. U., & Smith, G. H. (2005). Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta1 expression. Oncogene, 24, 552–560.

    Article  PubMed  CAS  Google Scholar 

  12. Boulanger, C. A., & Smith, G. H. (2001). Reducing mammary cancer risk through premature stem cell senescence. Oncogene, 20, 2264–2272.

    Article  PubMed  CAS  Google Scholar 

  13. Booth, B. W., Boulanger, C. A., & Smith, G. H. (2007). Alveolar progenitor cells develop in mouse mammary glands independent of pregnancy and lactation. Journal of Cellular Physiology, 212, 729–736.

    Article  PubMed  CAS  Google Scholar 

  14. Matulka, L. A., Triplett, A. A., & Wagner, K. U. (2007). Parity-induced mammary epithelial cells are multipotent and express cell surface markers associated with stem cells. Developmental Biology, 303, 29–44.

    Article  PubMed  CAS  Google Scholar 

  15. Stingl, J., Eirew, P., Ricketson, I., et al. (2006). Purification and unique properties of mammary epithelial stem cells. Nature, 439, 993–997.

    PubMed  CAS  Google Scholar 

  16. Kordon, E. C., McKnight, R. A., Jhappan, C., Hennighausen, L., Merlino, G., & Smith, G. H. (1995). Ectopic TGF beta 1 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. Developmental Biology, 168, 47–61.

    Article  PubMed  CAS  Google Scholar 

  17. Jeselsohn, R., Brown, N. E., Arendt, L., et al. (2010). Cyclin D1 kinase activity is required for the self-renewal of mammary stem and progenitor cells that are targets of MMTV-ErbB2 tumorigenesis. Cancer Cell, 17, 65–76.

    Article  PubMed  CAS  Google Scholar 

  18. Henry, M. D., Triplett, A. A., Oh, K. B., Smith, G. H., & Wagner, K. U. (2004). Parity-induced mammary epithelial cells facilitate tumorigenesis in MMTV-neu transgenic mice. Oncogene, 23, 6980–6985.

    Article  PubMed  CAS  Google Scholar 

  19. Li, Z., Tognon, C. E., Godinho, F. J., et al. (2007). ETV6-NTRK3 fusion oncogene initiates breast cancer from committed mammary progenitors via activation of AP1 complex. Cancer Cell, 12, 542–558.

    Article  PubMed  CAS  Google Scholar 

  20. Asselin-Labat, M. L., Sutherland, K. D., Barker, H., et al. (2007). Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nature Cell Biology, 9, 201–209.

    Article  PubMed  CAS  Google Scholar 

  21. Sleeman, K. E., Kendrick, H., Robertson, D., Isacke, C. M., Ashworth, A., & Smalley, M. J. (2007). Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. The Journal of Cell Biology, 176, 19–26.

    Article  PubMed  CAS  Google Scholar 

  22. Visvader, J. E. (2009). Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes & Development, 23, 2563–2577.

    Article  CAS  Google Scholar 

  23. Cairns, J. (1975). Mutation selection and the natural history of cancer. Nature, 255, 197–200.

    Article  PubMed  CAS  Google Scholar 

  24. Potten, C. S., Owen, G., & Booth, D. (2002). Intestinal stem cells protect their genome by selective segregation of template DNA strands. Journal of Cell Science, 115, 2381–2388.

    PubMed  CAS  Google Scholar 

  25. Bickenbach, J. R. (1981). Identification and behavior of label-retaining cells in oral mucosa and skin. Journal of Dental Research, 60(Spec No C), 1611–1620.

    Article  PubMed  Google Scholar 

  26. Cotsarelis, G., Sun, T. T., & Lavker, R. M. (1990). Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell, 61, 1329–1337.

    Article  PubMed  CAS  Google Scholar 

  27. Karpowicz, P., Morshead, C., Kam, A., et al. (2005). Support for the immortal strand hypothesis: neural stem cells partition DNA asymmetrically in vitro. The Journal of Cell Biology, 170, 721–732.

    Article  PubMed  CAS  Google Scholar 

  28. Smith, G. H. (2005). Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development, 132, 681–687.

    Article  PubMed  CAS  Google Scholar 

  29. Zeps, N., Dawkins, H. J., Papadimitriou, J. M., Redmond, S. L., & Walters, M. I. (1996). Detection of a population of long-lived cells in mammary epithelium of the mouse. Cell and Tissue Research, 286, 525–536.

    Article  PubMed  CAS  Google Scholar 

  30. Zeps, N., Bentel, J. M., Papadimitriou, J. M., D’Antuono, M. F., & Dawkins, H. J. (1998). Estrogen receptor-negative epithelial cells in mouse mammary gland development and growth. Differentiation, 62, 221–226.

    Article  PubMed  CAS  Google Scholar 

  31. Booth, B. W., & Smith, G. H. (2006). Estrogen receptor-alpha and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands. Breast Cancer Research, 8, R49.

    Article  PubMed  Google Scholar 

  32. Booth, B. W., Boulanger, C. A., & Smith, G. H. (2008). Selective segregation of DNA strands persists in long-label-retaining mammary cells during pregnancy. Breast Cancer Research, 10, R90.

    Article  PubMed  Google Scholar 

  33. Klar, A. J. (2004). A genetic mechanism implicates chromosome 11 in schizophrenia and bipolar diseases. Genetics, 167, 1833–1840.

    Article  PubMed  CAS  Google Scholar 

  34. Klar, A. J. (1994). A model for specification of the left-right axis in vertebrates. Trends in Genetics, 10, 392–396.

    Article  PubMed  CAS  Google Scholar 

  35. Klar, A. J. (2008). Support for the selective chromatid segregation hypothesis advanced for the mechanism of left-right body axis development in mice. Breast Disease, 29, 47–56.

    PubMed  Google Scholar 

  36. Klar, A. J. (1987). Differentiated parental DNA strands confer developmental asymmetry on daughter cells in fission yeast. Nature, 326, 466–470.

    Article  PubMed  CAS  Google Scholar 

  37. Armakolas, A., & Klar, A. J. (2006). Cell type regulates selective segregation of mouse chromosome 7 DNA strands in mitosis. Science, 311, 1146–1149.

    Article  PubMed  CAS  Google Scholar 

  38. Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 4, 7–25.

    PubMed  CAS  Google Scholar 

  39. Boulanger, C. A., Mack, D. L., Booth, B. W., & Smith, G. H. (2007). Interaction with the mammary microenvironment redirects spermatogenic cell fate in vivo. Proceedings of the National Academy of Sciences of the United States of America, 104, 3871–3876.

    Article  PubMed  CAS  Google Scholar 

  40. Booth, B. W., Mack, D. L., Androutsellis-Theotokis, A., McKay, R. D., Boulanger, C. A., & Smith, G. H. (2008). The mammary microenvironment alters the differentiation repertoire of neural stem cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 14891–14896.

    Article  PubMed  CAS  Google Scholar 

  41. Boulanger, C. A., & Smith, G. H. (2009). Reprogramming cell fates in the mammary microenvironment. Cell Cycle, 8, 1127–1132.

    Article  PubMed  CAS  Google Scholar 

  42. Klinowska, T. C., Alexander, C. M., Georges-Labouesse, E., et al. (2001). Epithelial development and differentiation in the mammary gland is not dependent on alpha 3 or alpha 6 integrin subunits. Developmental Biology, 233, 449–467.

    Article  PubMed  CAS  Google Scholar 

  43. Bussard, K. M., Boulanger, C. A., Booth, B. W., Bruno, R. D., & Smith, G. H. (2010). Reprogramming human cancer cells in the mouse mammary gland. Cancer Research, 70, 6336–6343.

    Article  PubMed  CAS  Google Scholar 

  44. Brisken, C., Park, S., Vass, T., Lydon, J. P., O’Malley, B. W., & Weinberg, R. A. (1998). A paracrine role for the epithelial progesterone receptor in mammary gland development. Proceedings of the National Academy of Sciences of the United States of America, 95, 5076–5081.

    Article  PubMed  CAS  Google Scholar 

  45. Mallepell, S., Krust, A., Chambon, P., & Brisken, C. (2006). Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proceedings of the National Academy of Sciences of the United States of America, 103, 2196–2201.

    Article  PubMed  CAS  Google Scholar 

  46. Taddei, I., Deugnier, M. A., Faraldo, M. M., et al. (2008). Beta1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. Nature Cell Biology, 10, 716–722.

    Article  PubMed  CAS  Google Scholar 

  47. Quyn, A. J., Appleton, P. L., Carey, F. A., et al. (2010). Spindle orientation bias in gut epithelial stem cell compartments is lost in precancerous tissue. Cell Stem Cell, 6, 175–181.

    Article  PubMed  CAS  Google Scholar 

  48. Mathur, D., Bost, A., Driver, I., & Ohlstein, B. (2010). A transient niche regulates the specification of Drosophila intestinal stem cells. Science, 327, 210–213.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert H. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruno, R.D., Smith, G.H. Functional Characterization of Stem Cell Activity in the Mouse Mammary Gland. Stem Cell Rev and Rep 7, 238–247 (2011). https://doi.org/10.1007/s12015-010-9191-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9191-9

Keywords

Navigation