Skip to main content

Advertisement

Log in

Wharton’s Jelly Mesenchymal Stem Cells as Candidates for Beta Cells Regeneration: Extending the Differentiative and Immunomodulatory Benefits of Adult Mesenchymal Stem Cells for the Treatment of Type 1 Diabetes

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSC) are uniquely capable of crossing germinative layers borders (i.e. are able to differentiate towards ectoderm-, mesoderm- and endoderm-derived cytotypes) and are viewed as promising cells for regenerative medicine approaches in several diseases. Type I diabetes therapy should potentially benefit from such differentiated cells: the search for alternatives to organ/islet transplantation strategies via stem cells differentiation is an ongoing task, significant goals having been achieved in most experimental settings (e.g. insulin production and euglycaemia restoration), though caution is still needed to ensure safe and durable effects in vivo. MSC are obtainable in high numbers via ex vivo culture and can be differentiated towards insulin-producing cells (IPC). Moreover, recent reports evidenced that MSC possess immunomodulatory activities (acting on both innate and acquired immunity effectors) which should result in a reduction of the immunogenicity of transplanted cells, thus limiting rejection. Moreover it has been proposed that MSC administration should be used to attenuate the autoimmune processes which lead to the destruction of beta cells. This review illustrates the recent advances made in differentiating human MSC to IPC. In particular, we compare the effectiveness of the differentiation protocols applied, the markers and functional assays used to characterize differentiated progeny, and the in vivo controls. We further speculate on how MSC derived from Wharton’s jelly of human umbilical cord may represent a more promising regenerative medicine tool, as recently demonstrated for endoderm-derived organs (as liver) in human subjects, also considering their peculiar immunomodulatory features compared to other MSC populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Friedenstein, A. J., Gorskaya, J. F., & Kulagina, N. N. (1976). Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Experimental Hematology, 4, 267–274.

    PubMed  CAS  Google Scholar 

  2. Caplan, A. I. (1991). Mesenchymal stem cells. Journal of Orthopaedic Research, 9, 641–650.

    PubMed  CAS  Google Scholar 

  3. Horwitz, E. M., Le Blanc, K., Dominici, M., et al. (2005). Clarification of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy, 7, 393–395.

    PubMed  CAS  Google Scholar 

  4. Secco, M., Moreira, Y. B., Zucconi, E., et al. (2009). Gene expression profile of mesenchymal stem cells from paired umbilical cord units: cord is different from blood. Stem Cell Reviews and Reports, 5, 387–401.

    PubMed  CAS  Google Scholar 

  5. Anzalone, R., Lo Iacono, M., Corrao, S., et al. (2010). New emerging potentials for human Wharton’s jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity. Stem Cells and Development, 19, 423–438.

    PubMed  CAS  Google Scholar 

  6. Hung, S. C., Chen, N. J., Hsieh, S. L., Ma, H. L., & Lo, W. H. (2002). Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells, 20, 249–258.

    PubMed  Google Scholar 

  7. Delorme, B., Ringe, J., Gallay, N., et al. (2008). Specific plasma membrane protein phenotype of cultureamplified and native human bone marrow mesenchymal stem cells. Blood, 111, 2631–2635.

    PubMed  CAS  Google Scholar 

  8. Reger, R. L., Tucker, A. H., & Wolfe, M. R. (2008). Differentiation and characterization of human MSCs. Methods in Molecular Biology, 449, 93–107.

    PubMed  CAS  Google Scholar 

  9. Turnovcova, K., Ruzickova, K., Vanecek, V., Sykova, E., & Jendelova, P. (2009). Properties and growth of human bone marrow mesenchymal stromal cells cultivated in different media. Cytotherapy, 11, 874–885.

    PubMed  CAS  Google Scholar 

  10. Weiss, M. L., Medicetty, S., Bledsoe, A. R., et al. (2006). Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells, 24, 781–792.

    PubMed  CAS  Google Scholar 

  11. Rao, M. S., & Mattson, M. P. (2001). Stem cells and aging: expanding the possibilities. Mechanisms of Ageing and Development, 122, 713–734.

    PubMed  CAS  Google Scholar 

  12. Romanov, Y. A., Svintsitskaya, V. A., & Smirnov, V. N. (2003). Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like from umbilical cord. Stem Cells, 21, 105–110.

    PubMed  Google Scholar 

  13. La Rocca, G., Anzalone, R., Corrao, S., et al. (2009). Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochemistry and Cell Biology, 131, 267–282.

    PubMed  Google Scholar 

  14. Majore, I., Moretti, P., Stahl, F., Hass, R., & Kasper, C. (2010). Growth and differentiation properties of mesenchymal stromal cell populations derived from whole human umbilical cord. Stem Cell Reviews and Reports. doi:10.1007/s12015-010-9165-y.

    Google Scholar 

  15. Fong, C. Y., Chak, L. L., Biswas, A., et al. (2010). Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Reviews and Reports. doi:10.1007/s12015-010-9166-x.

    Google Scholar 

  16. La Rocca, G., Anzalone, R., & Farina, F. (2009). The expression of CD68 in human umbilical cord mesenchymal stem cells: new evidences of presence in non-myeloid cell types. Scandinavian Journal of Immunology, 70, 161–162.

    PubMed  Google Scholar 

  17. Weiss, M. L., Anderson, C., Medicetty, S., et al. (2008). Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells, 26, 2865–2874.

    PubMed  CAS  Google Scholar 

  18. Vija, L., Fargec, D., Gautier, J. F., et al. (2009). Mesenchymal stem cells: stem cell therapy perspectives for type 1 diabetes. Diabetes & Metabolism, 35, 85–93.

    CAS  Google Scholar 

  19. Di Nicola, M., Carlo-Stella, C., Magni, M., et al. (2002). Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99, 3838–3843.

    PubMed  Google Scholar 

  20. Li, D. S., Warnock, G. L., Tu, H. J., et al. (2009). Do immunotherapy and β cell replacement play a sinergistic role in the treatment of type 1 diabetes? Life Sciences, 85, 549–556.

    PubMed  CAS  Google Scholar 

  21. Nichols, J., & Cooke, A. (2009). Overcoming self-destruction in pancreas. Current Opinion in Biotechnology, 20, 511–515.

    PubMed  CAS  Google Scholar 

  22. Alma, J., Nauta, W., & Fibbe, E. (2007). Immunomodulatory properties of mesenchymal stromal cells. Blood, 110, 3499–3506.

    Google Scholar 

  23. Selmani, Z., Naji, A., Gaiffe, E., et al. (2009). HLA-G is a crucial immunosuppressive molecule secreted by adult human mesenchymal stem cells. Transplantation, 87(9 Suppl.), S62–S66.

    PubMed  CAS  Google Scholar 

  24. Le Bouteiller, P. (2000). HLA-G in the human placenta: expression and potential functions. Biochemical Society Transactions, 28, 208–212.

    PubMed  Google Scholar 

  25. Ren, G., Zhao, X., Zhang, L., et al. (2010). Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cella adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression. Journal of Immunology, 184, 2321–2328.

    CAS  Google Scholar 

  26. Krampera, M., Glennie, S., Dyson, J., et al. (2003). Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood, 101, 3722–3729.

    PubMed  CAS  Google Scholar 

  27. Djouad, F., Plence, P., Bony, C., et al. (2003). Immunosuppressive effect of mesenchymal stem cells favors tumour growth in allogeneic animals. Blood, 102, 3837–3844.

    PubMed  CAS  Google Scholar 

  28. Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105, 1815–1818.

    PubMed  CAS  Google Scholar 

  29. Corcione, A., Benvenuto, F., Ferretti, E., et al. (2006). Human mesenchymal stem cells modulate B-cell functions. Blood, 107, 367–372.

    PubMed  CAS  Google Scholar 

  30. Németh, K., Leelahavanichkul, A., Yuen, P. S. T., et al. (2009). Bone marroew stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nature Medicine, 15, 42–49.

    PubMed  Google Scholar 

  31. Mei, S. H., Haitsma, J. J., Dos Santos, C. C., et al. (2010). Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. American Journal of Respiratory and Critical Care Medicine. doi:10.1164/rccm.201001-0010OC.

    PubMed  Google Scholar 

  32. Barbagallo, I., Tibullo, D., Di Rosa, M., et al. (2008). A cytoprotective role for the heme oxygenase-1/CO pathway during neural differentiation of human mesenchymal stem cells. Journal of Neuroscience Research, 86, 1927–1935.

    PubMed  CAS  Google Scholar 

  33. Jiang, Y., Chen, L., Tang, Y., et al. (2010). HO-1 gene overexpression enhances the beneficial effects of superparamagnetic iron oxide labeled bone marrow stromal cells transplantation in swine hearts underwent ischemia/reperfusion: a MRI study. Basic Research in Cardiology, 105, 431–442.

    PubMed  CAS  Google Scholar 

  34. Tu, Z., Li, Q., Bu, H., & Lin, F. (2010). Mesenchymal stem cells inhibit complement activation by secreting factor H. Stem Cells and Development. doi:10.1089/scd.2009.0418.

    PubMed  Google Scholar 

  35. Sato, K., Ozaki, K., Oh, I., et al. (2007). Nitric oxide plays a crucial role in suppression of T-cell proliferation by mesenchymal stem cells. Blood, 109, 228–234.

    PubMed  CAS  Google Scholar 

  36. Ren, G., Zhang, L., Zhao, X., et al. (2008). Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell, 2, 141–150.

    PubMed  CAS  Google Scholar 

  37. Yoo, K. H., Jang, I. K., Lee, M. W., et al. (2009). Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cellular Immunology, 259, 150–156.

    PubMed  CAS  Google Scholar 

  38. Troyer, D. L., & Weiss, M. L. (2007). Concise review: Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells, 26, 591–599.

    PubMed  Google Scholar 

  39. Wang, H. S., Hung, S. C., Peng, S. T., et al. (2004). Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells, 22, 1330–1337.

    PubMed  Google Scholar 

  40. Götherstrom, C., West, A., Liden, J., Uzunel, M., Lahesmaa, R., & Le Blanc, K. (2005). Difference in gene expression between human fetal liver and adult bone marrow mesenchymal stem cells. Haematologica, 90, 1017–1026.

    PubMed  Google Scholar 

  41. Selmani, Z., Naji, A., Zidi, I., Favier, B., et al. (2008). Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells, 26, 212–222.

    PubMed  CAS  Google Scholar 

  42. Deans, R. J., & Moseley, A. B. (2000). Mesenchymal stem cells: biology and potential clinical uses. Experimental Hematology, 28, 875–884.

    PubMed  CAS  Google Scholar 

  43. Xu, W., Zhang, X., Qian, H., et al. (2004). Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Experimental Biology and Medicine, 229, 623–631.

    PubMed  CAS  Google Scholar 

  44. Sheng, H., Wang, Y., Jin, Y., et al. (2008). A critical role of IFNγ in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Research, 18, 846–857.

    PubMed  CAS  Google Scholar 

  45. Xue, Q., Luan, X. Y., Gu, Y. Z., et al. (2010). The negative co-signaling molecule b7-h4 is expressed by human bone marrow-derived mesenchymal stem cells and mediates its T-cell modulatory activity. Stem Cells and Development, 19, 27–38.

    PubMed  CAS  Google Scholar 

  46. Friedman, R., Betancur, M., Boissel, L., Tuncer, H., Cetrulo, C., & Klingemann, H. (2007). Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation. Biology of Blood and Marrow Transplantation, 13, 1477–1486.

    PubMed  Google Scholar 

  47. Guo, Z., Zheng, C., Chen, Z., et al. (2009). Fetal BM-derived mesenchymal stem cells promote the expansion of human Th17 cells, but inhibit the production of Th1 cells. European Journal of Immunology, 39, 2840–2849.

    PubMed  CAS  Google Scholar 

  48. Prasanna, S. J., Gopalakrishnan, D., Shankar, S. R., & Vasandan, A. B. (2010). Pro-inflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially. PLoS One, 5, e9016.

    PubMed  Google Scholar 

  49. Sotiropoulou, P. A., Perez, S. A., Gritzapis, A. D., Baxevaxis, C. N., & Papamichail, M. (2006). Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells, 24, 74–85.

    PubMed  Google Scholar 

  50. Zanone, M. M., Favaro, E., Miceli, I., et al. (2010). Human mesenchymal stem cells modulate cellular immune responses to islet antigen glutamic acid decarboxylase in type 1 diabetes. Journal of Clinical Endocrinology and Metabolism, 95, 3788–3797.

    PubMed  CAS  Google Scholar 

  51. Chen, K., Wang, D., Du, W. T., et al. (2010). Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clinical Immunology, 135, 448–456.

    PubMed  CAS  Google Scholar 

  52. Lee, R. H., Pulin, A. A., Seo, M. J., et al. (2009). Intravenous hMSCs improve myocardial infarction in mice because cells embolie in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell, 5, 54–63.

    PubMed  CAS  Google Scholar 

  53. Kadri, T., Lataillade, J. J., Doucet, C., et al. (2005). Proteomic study of galectin-1 expression in human mesenchymal stem cells. Stem Cells and Development, 14, 204–212.

    PubMed  CAS  Google Scholar 

  54. Sioud, M., Mobergslien, A., Boudabous, A., & Fløisand, Y. (2010). Evidence for the involvement of galectin-3 in esenchymal stem cell suppression of allogeneic T-cell proliferation. Scandinavian Journal of Immunology, 71, 267–274.

    PubMed  CAS  Google Scholar 

  55. Griffin, M. D., Ritter, T., & Mahon, B. P. (2010). Immunological aspects of allogeneic mesenchymal stem cell therapies. Human Gene Therapy. doi:10.1089/hum.2010.156.

    Google Scholar 

  56. Hunt, J. S., Petroff, M. G., McIntire, R. H., & Ober, C. (2005). HLA-G and immune tolerance in pregnancy. The FASEB Journal, 19, 681–693.

    PubMed  CAS  Google Scholar 

  57. Corrao, S., Campanella, C., Anzalone, R., et al. (2010). Human Hsp10 and Early Pregnancy Factor (EPF) and their relationship and involvement in cancer and immunity: current knowledge and perspectives. Life Sciences, 86, 145–152.

    PubMed  CAS  Google Scholar 

  58. Anzalone, R., La Rocca, G., Di Stefano, A., et al. (2009). Role of endothelial cell stress in the pathogenesis of chronic heart failure. Frontiers in Bioscience, 14, 2238–2247.

    PubMed  CAS  Google Scholar 

  59. La Rocca, G., Di Stefano, A., Eleuteri, E., et al. (2009). Oxidative stress induces myeloperoxidase expression in endocardial endothelial cells from patients with chronic heart failure. Basic Research in Cardiology, 104, 307–320.

    PubMed  CAS  Google Scholar 

  60. Eleuteri, E., Magno, F., Gnemmi, I., et al. (2009). Role of oxidative and nitro sative stress biomarkers in chronic heart failure. Frontiers in Biosciences, 14, 2230–2237.

    CAS  Google Scholar 

  61. Eleuteri, E., Di Stefano, A., Ricciardolo, F. L., et al. (2009). Increased nitrotyrosine plasma levels in relation to systemic markers of inflammation and myeloperoxidase in chronic heart failure. International Journal of Cardiology, 135, 386–390.

    PubMed  Google Scholar 

  62. Dìaz-Lagares, A., Alegre, E., LeMaoult, J., Carosella, E. D., & Gonzalez, A. (2009). Nitric oxide produces HLA-G nitration and induces metalloprotease-dependent shedding creating a tolerogenic milieu. Immunology, 126, 436–445.

    PubMed  Google Scholar 

  63. Gonzalez, M. A., Gonzalez-Rey, E., Rico, L., Büscher, D., & Delgado, M. (2009). Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis & Rheumatism, 60, 1006–1019.

    CAS  Google Scholar 

  64. Madec, A. M., Mallone, G., Alfonso, E., et al. (2009). Mesenchymal stem cells protect NOD mice from diabetes by inducing regulatory T cells. Diabetologia, 52, 1391–1399.

    PubMed  CAS  Google Scholar 

  65. Zhao, Y., Lin, B., Darflinger, R., Zhang, Y., Holterman, M. J., & Skidgel, R. A. (2009). Human cord blood stem cell-modulated regulatory T lymphocytes reverse the autoimmune-caused type 1 diabetes in nonobese diabetic (NOD) mice. PloS ONE, 4, e4226.

    PubMed  Google Scholar 

  66. Sundin, M., Ringdén, O., Sundberg, B., Nava, S., Götherström, C., & Le Blanc, K. (2007). No alloantibodies against mesenchymal stem cells, but presence of anti-fetal calf serum antibodies, after transplantation in allogeneic hematopoietic stem cell recipients. Haematologica, 92, 1208–1215.

    PubMed  CAS  Google Scholar 

  67. Rasmusson, I., Uhlin, M., Le Blanc, K., & Levitski, V. (2007). Mesenchymal stem cells fail to trigger effector functions of cytotoxic T lymphocytes. Journal of Leukocyte Biology, 82, 887–893.

    PubMed  CAS  Google Scholar 

  68. Morandi, F., Raffaghello, L., Bianchi, G., et al. (2008). Immunogenicity of human mesenchymal stem cells in HLA-class I-restricted T-cell responses against viral or tumor-associated antigens. Stem Cells, 26, 1275–1287.

    PubMed  CAS  Google Scholar 

  69. Shabbir, A., Zisa, D., Leiker, M., Johnston, C., Lin, H., & Lee, T. (2009). Muscular dystrophy therapy by non-autologous mesenchymal stem cells: muscle regeneration without immunosuppression and inflammation. Transplantation, 87, 1275–1282.

    PubMed  CAS  Google Scholar 

  70. Quevedo, H. C., Hatzistergos, K., Oskouei, B. N., et al. (2009). Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomiopathy via trilineage differentiating capacity. PNAS USA, 106, 14022–14027.

    PubMed  CAS  Google Scholar 

  71. Chen, L., Tredget, E. E., Liu, C., & Wu, Y. (2009). Analysis of allogenicity of mesenchymal stem cells in engraftment and wound healing in mice. PloS ONE, 4, e7119.

    PubMed  Google Scholar 

  72. Eliopoulos, N., Stagg, J., Lejeune, L., Pommey, S., & Galipeau, J. (2005). Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood, 106, 4057–4065.

    PubMed  CAS  Google Scholar 

  73. Nauta, A. J., Westerhuis, G., Kruisselbrink, A. B., Lurvink, E. G. A., Willemze, R., & Fibbe, W. E. (2006). Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood, 108, 2114–2120.

    PubMed  CAS  Google Scholar 

  74. Prigozhina, T. B., Khitrin, S., Elkin, G., Eizik, O., Morecki, S., & Slavin, S. (2008). Mesenchymal stromal cells lose their immunosuppressive potential after allotransplantation. Experimental Hematology, 36, 1370–1376.

    PubMed  CAS  Google Scholar 

  75. Chiavegato, A., Bollini, S., Pozzobon, M., et al. (2007). Human amniotic Xuid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immunosuppressed or immuno-deficient rat. Journal of Molecular and Cellular Cardiology, 42, 746–759.

    PubMed  CAS  Google Scholar 

  76. Ren, G., Su, J., Zhang, L., et al. (2009). Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells, 27, 1954–1962.

    PubMed  CAS  Google Scholar 

  77. Sudres, M., Norol, F., Trenado, A., et al. (2006). Bone marrow mesenchymal stem cells suppress lymphocyte proliferation in vitro but fail to prevent graft-versus-host disease in mice. Journal of Immunology, 176, 7761–7767.

    CAS  Google Scholar 

  78. Iyer, S. S., & Rojas, M. (2008). Anti-inflammatory effects of mesenchymal stem cells: novel concept for future therapies. Expert Opinion in Biological Therapy, 8, 569–581.

    CAS  Google Scholar 

  79. Ringdén, O., Uzunel, M., Rasmusson, I., et al. (2006). Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation, 81, 1390–1397.

    PubMed  Google Scholar 

  80. Zhang, X., Jiao, C., & Zhao, S. (2009). Role of mesenchymal stem cells in immunological rejection of organ transplantation. Stem Cell Reviews and Reports, 5, 402–409.

    PubMed  Google Scholar 

  81. Ito, T., Itakura, S., Rawson, J., et al. (2010). Mesenchymal stem cell and islet co-transplantation promotes graft revascularizatioon and function. Transplantation, 89, 1438–1445.

    PubMed  Google Scholar 

  82. Li, F. R., Wang, X. G., Deng, C. Y., Qi, H., Reb, L. L., & Zhou, H. X. (2010). Immune modulation of co-transplantation mesenchymal stem cells with islet on T and dendritic cells. Clinical and Experimental Immunology, 161, 357–363.

    PubMed  CAS  Google Scholar 

  83. Longoni, B., Szilagyi, E., Quaranta, P., et al. (2010). Mesenchymal stem cells prevent acute rejection and prolong graft function in pancreatic islet transplantation. Diabetes Technology and Therapy, 12, 435–446.

    CAS  Google Scholar 

  84. Hoogduijn, M. J., Popp, F., Verbeek, R., et al. (2010). The immunotherapy properties of mesenchymal stem cells and their use for immunotherapy. International Immunopharmacology. doi:10.1016/j.intimp.2010.06.019.

    PubMed  Google Scholar 

  85. Popp, F. C., Eggenhofer, E., Renner, P., et al. (2008). Mesenchymal stem cells can induce long-term acceptance of solid organ allografts in synergy with low-dose mycophenolate. Transplant Immunology, 20, 55–60.

    PubMed  CAS  Google Scholar 

  86. Ge, W., Jiang, J., Baroja, M. L., et al. (2009). Infusion of mesenchymal stem cells and rapamycin synergize to attenuate alloimmune responses and promote cardiac allograft tolerance. American Journal of Transplantation, 9, 1760–1772.

    PubMed  CAS  Google Scholar 

  87. Le Blanc, K., Tammik, C., Rosendahl, K., Zettenberg, E., & Ringdén, O. (2003). HLA expression and immunogenic properties of differentiated and undifferentiated mesenchymal stem cells. Experimental Hematology, 31, 890–896.

    PubMed  Google Scholar 

  88. Liu, H., Kemeny, D. M., Heng, B. C., Ouyang, H. W., Melendez, A. J., & Cao, T. (2006). The immunogenic and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells. The Journal of Immunology, 176, 2864–2871.

    PubMed  CAS  Google Scholar 

  89. Zheng, Z. H., Li, X. Y., Ding, J., Jia, J. F., & Zhu, P. (2008). Allogeneic mesenchymal stem cell and mesenchymal stem cell-differentiated chondrocyte suppress the responses of type II collagen-reactive T cells in rheumatoid arthritis. Rheumatology, 47, 22–30.

    PubMed  CAS  Google Scholar 

  90. Chen, X., McClurg, A., Zhou, G. Q., McCaigue, M., Armstrong, M. A., & Li, G. (2007). Chondrogenic differentiation alters the immunosuppressive property of bone marrow-derived mesenchymal stem cells, and the effect is partially due to the upregulated expression of B7 molecules. Stem Cells, 25, 364–370.

    PubMed  Google Scholar 

  91. Pittenger, M. (2009). Sleuthing the source of regeneration by MSCs. Cell Stem Cell, 5, 8–10.

    Google Scholar 

  92. Kemp, K., Gray, E., Mallam, E., Scolding, N., & Wilkins, A. (2010). Inflammatory cytokine induced regulation of superoxide dismutase 3 expression by human mesenchymal stem cells. Stem Cell Reviews and Reports. doi:10.1007/s12015-010-9178-6.

    PubMed  Google Scholar 

  93. Liao, W., Zhong, J., Yu, J., et al. (2009). Therapeutic benefit of human umbilical cord derived mesenchymal stromal cells in intracerebral hemorrage rat: implication for anti-inflammation and angiogenesis. Cellular Physiology and Biochemistry., 24, 307–316.

    PubMed  CAS  Google Scholar 

  94. Carreras, A., Almendros, I., Montserrat, J. M., Navajas, D., & Farré, R. (2010). Mesenchymal stem cells reduce inflammation in a rat model of obstructive sleep apnea. Respiratory Physiology & Neurobiology, 172, 210–212.

    CAS  Google Scholar 

  95. Cao, H., Quian, H., Xu, W., et al. (2010). Mesenchymal stem cells derived from human umbilical cord ameliorate ischemia/reperfusion-induced acute renal failure in rats. Biotechnology Letters, 32, 725–732.

    PubMed  CAS  Google Scholar 

  96. Tsai, P. C., Fu, T. W., Chen, Y. M. A., et al. (2009). The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat liver fibrosis. Liver Transplantation, 15, 484–495.

    Google Scholar 

  97. Gonzalez, M. A., Gonzalez-Rey, E., Rico, L., Büscher, D., & Delgado, M. (2009). Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology, 136, 978–989.

    PubMed  Google Scholar 

  98. Bonfield, T. L., Koloze, M. F., Lennon, D. P., Zuchowski, B., Yang, S. E., & Caplan, A. L. (2010). Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. American Journal of Physiology Lung Cellular and Molecular Physiology. doi:10.1152/ajplung.00182.2009.

    PubMed  Google Scholar 

  99. Ishikane, S., Yamahara, K., Sada, M., et al. (2010). Allogeneic administration of fetal membrane-derived mesenchymal stem cells attenuates acute myocarditis in rats. Journal of Molecular and Cellular Cardiology. doi:10.1016/j.yjmcc.2010.07.019.

    PubMed  Google Scholar 

  100. Kim, Y. S., Park, H. J., Hong, M. H., et al. (2009). TNF-alpha enhances engraftment of mesenchymal stem cells into infarcted myocardium. Frontiers in Bioscience, 14, 2845–2856.

    PubMed  CAS  Google Scholar 

  101. Ende, N., Chen, R., & Reddi, A. S. (2004). Effect of human umbilical cord blood cells on glycemia and insulitis in type 1 diabetic mice. Biochemical and Biophysical Research Communications, 325, 665–669.

    PubMed  CAS  Google Scholar 

  102. Wehling, N., Palmer, G. D., Pilapil, C., et al. (2009). Interleukin-1β and tumor necrosis factor α inhibit chondrogenesis by human mesenchymal stem cells through NF-κB-dependent pathways. Arthritis & Rheumatism, 60, 801–812.

    CAS  Google Scholar 

  103. Weir, G. C., & Bonner-Weir, S. (2010). Dreams for type 1 diabetes: shutting off autoimmunity and stimulating beta-cell regeneration. Endocrinology, 151, 2971–2973.

    PubMed  CAS  Google Scholar 

  104. Dor, Y., & Stanger, B. Z. (2007). Regeneration in liver and pancreas: time to cut the umbilical cord? Science STKE, 414, pe66.

    Google Scholar 

  105. Eberhard, D., Lammert, E. (2009). The pancreatic β-cell in the islet and organ community. Current Opinion in Genetics & Development, 19, 469–475.

    Google Scholar 

  106. Sun, B., Roh, K. H., Lee, S. R., Lee, Y. S., Kang, K. S. (2007). Induction of human umbilical cord blood-derived stem cells with embryonic stem cell phenotypes into insulin producing islet- like structure. Biochemical and Biophysical Research Communications, 354, 919–923.

    Google Scholar 

  107. Wu, L. F., Wang, N. N., Liu, Y. S., Wei, X. (2009). Differentiation of Wharton’s Jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells. Tissue Engineering Part A, 15, 2865–2873.

    Google Scholar 

  108. MacDonald, M. R., Petrie, M. C., Hawkins, N. M., et al. (2008). Diabetes, left ventricular systolic dysfunction, and chronic heart failure. European Heart Journal, 29, 1224–1240.

    Google Scholar 

  109. Scrutinio, D., Giannuzzi, P. (2008). Comorbidity in patients undergoing coronary artery bypass graft surgery: impact on outcome and implications for cardiac rehabilitation. European Journal of Cardiovascular Prevention and Rehabilitation, 15, 379–385.

    Google Scholar 

  110. Palma, C. A., Lindeman, R., Tuch, B. E. (2008). Blood into β-cells: can adult stem cells be used as a therapy for type 1 diabetes? Regenerative Medicine, 3, 1–15.

  111. Sahu, S., Tosh, D., Hardikar, A. A. (2009). New sources of β-cells for treating diabetes. Journal of Endocrinology, 202, 13–16.

    Google Scholar 

  112. Aguayo-Mazzuccato, C., & Bonner-Weir, S. (2010). Stem cell therapy for type 1 diabetes mellitus. Nature Reviews Endocrinology, 6, 139–148.

    Google Scholar 

  113. Fadini, G. P., Sartore, S., Schiavon, M., et al. (2006). Diabetes impairs progenitor cell mobilization after hindlimb hischaemia-reperfusion injury in rats. Diabetologia, 49, 3075–3084.

    PubMed  CAS  Google Scholar 

  114. Gallagher, K. A., Liu, Z. J., Xiao, M., et al. (2007). Diabetic impaiorments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. Journal of Clinical Investigation, 117, 1249–1259.

    PubMed  CAS  Google Scholar 

  115. McKnight, K. D., & Kim, S. K. (2010). Deconstructing pancreas development to reconstruct human islets from pluripotent stem cells. Cell Stem Cell, 6, 300–308.

    PubMed  CAS  Google Scholar 

  116. Puri, S., & Hebrok, M. (2010). Cellular plasticity within the pancreas—lessons learned from development. Developmental Cell, 18, 342–356.

    PubMed  CAS  Google Scholar 

  117. Guney, M. A., & Gannon, M. (2009). Pancreas cell fate. Birth Defects Research (Part C), 87, 232–248.

    CAS  Google Scholar 

  118. McDonald, E., Krishnamurthy, M., Goodyer, C. G., & Wang, R. (2009). The emerging roles of SOX transcription factors in pancreatic endocrine cell development and function. Stem Cells and Development, 18, 1379–1387.

    PubMed  CAS  Google Scholar 

  119. Shao, S., Fang, Z., Yu, X., & Zhang, M. (2009). Transcription factors involved in glucose-stimulated insulin secretion of pancreatic beta cells. Biochemical and Biophysical Research Communications, 384, 401–404.

    PubMed  CAS  Google Scholar 

  120. Burlison, J. S., Long, Q., Fujitani, Y., et al. (2008). Pdx-1 and Ptf1a concurrently determine the fate specification of pancreatic multipotent progenitor cells. Developmental Biology, 316, 74–86.

    PubMed  CAS  Google Scholar 

  121. Kawaguchi, Y., Cooper, B., Gannon, M., et al. (2002). The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nature Genetics, 32, 128–134.

    PubMed  CAS  Google Scholar 

  122. Sellick, G. S., Barker, K. T., Stolte-Dijkstra, I., et al. (2004). Mutations in Ptf1a cause pancreatic and cerebellar agenesis. Nature Genetics, 36, 1301–1305.

    PubMed  CAS  Google Scholar 

  123. Gradwohl, G., Dierich, A., LeMeur, M., & Guillemot, F. (2000). Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proceedings of the National Academy of Sciences USA, 97, 1607–1611.

    CAS  Google Scholar 

  124. Sussel, L., Kalamaras, J., Hartingan-O’Connor, D. J., et al. (1998). Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells. Development, 125, 2213–2221.

    PubMed  CAS  Google Scholar 

  125. Servitja, J. M., & Ferrer, J. (2004). Transcriptional networks controlling pancreatic development and beta cell function. Diabetologia, 47, 597–613.

    PubMed  CAS  Google Scholar 

  126. Sulzbacher, S., Schroeder, I. S., Truong, T. T., & Wobus, A. M. (2009). Activin A-induced differentiation of embryonic stem cells into endoderm and pancreatic progenitors-the influence of differentiation factors and culture conditions. Stem Cell Reviews, 5, 159–173.

    PubMed  CAS  Google Scholar 

  127. Soria, B., Roche, E., Berna, G., et al. (2000). Insulin secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes, 49, 157–162.

    PubMed  CAS  Google Scholar 

  128. Lumelsky, N., Blondel, O., Laeng, P., et al. (2001). Differentiation of embryonic stem cells to insulin secreting structures similar to pancreatic islets. Science, 292, 1389–1394.

    PubMed  CAS  Google Scholar 

  129. Sipione, S., Eshpeter, A., Lyon, J. G., Korbutt, G. S., & Bleackley, R. C. (2004). Insulin expressing cells from differentiated embryonic stem cells are not beta cells. Diabetologia, 47, 499–508.

    PubMed  CAS  Google Scholar 

  130. Furth, M. E., & Atala, A. (2009). Stem cell sources to treat diabetes. Journal of Cellular Biochemistry, 106, 507–511.

    PubMed  CAS  Google Scholar 

  131. Rolletscheck, A., Kania, G., & Wobus, A. M. (2006). Generation of pancreatic insulin-producing cells from embryonic stem cells—“proof of principle”, but questions still unanswered. Diabetologia, 49, 2541–2545.

    Google Scholar 

  132. Chakrabarti, S. K., & Mirminra, R. G. (2003). Transcription factors direct the development and function of pancreatic β-cells. Trends in Endocrinology and Metabolism, 14, 78–84.

    PubMed  CAS  Google Scholar 

  133. Chen, L. B., Jiang, X. B., & Yang, L. (2004). Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World Journal of Gastroenterology, 10, 3016–3020.

    PubMed  CAS  Google Scholar 

  134. Wu, X. H., Liu, C. P., Xu, K. F., et al. (2007). Reversal of hyperglycemia in diabetic rats by portal vein transplantation of islet-like cells generated from bone marrow mesenchymal stem cells. World Journal of Gastroenterology, 13, 3342–3349.

    PubMed  CAS  Google Scholar 

  135. Oh, S. H., Muzzonigro, T. M., Bae, S. H., LaPlante, J. M., Hatch, H. M., & Petersen, B. E. (2004). Adult bone marrow-derived cells trans-differentiating into insulin-producing cells for treatment of type I diabetes. Laboratory Investigation, 84, 607–617.

    PubMed  CAS  Google Scholar 

  136. Paz, A. H., Salton, G. D., Ayala-Lugo, A., et al. (2010). Betacellulin overexpression in mesenchymal stem cells induces insulin secretion in vitro and ameliorates streptozocin-induced hyperglycemia in rats. Stem Cells and Development. doi:10.1089/scd.2009.0490.

    PubMed  Google Scholar 

  137. Moriscot, C., De Fraipont, F., Richard, M. J., et al. (2005). Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or microenvironmental manipulation in vitro. Stem Cells, 23, 594–604.

    PubMed  CAS  Google Scholar 

  138. Li, Y., Zhang, R., Qiao, H., et al. (2007). Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. Journal of Cellular Physiology, 211, 36–44.

    PubMed  CAS  Google Scholar 

  139. Lee, R. H., Seo, M. J., Reger, R. L., et al. (2006). Multipotent stromal from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proceedings of the National Academy of Sciences USA, 103, 17438–17443.

    CAS  Google Scholar 

  140. Sun, Y., Chen, L., Hou, X. G., et al. (2007). Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chinese Medical Journal, 120, 771–776.

    PubMed  CAS  Google Scholar 

  141. Karnieli, O., Izhar-Prato, Y., Bulvik, S., & Efrat, S. (2007). Generation of insulin-producing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells, 25, 2837–2844.

    PubMed  CAS  Google Scholar 

  142. Xie, Q. P., Huang, H., Xu, B., et al. (2009). Human bone marrow mesenchymal stem cells differentiate into insulin-producing cells upon microenvironmental manipulation in vitro. Differentiation, 77, 483–491.

    PubMed  CAS  Google Scholar 

  143. Zuk, P. A., Zhu, M., Ashjian, P., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13, 4279–4295.

    PubMed  CAS  Google Scholar 

  144. Timper, K., Seboek, D., Eberhardt, M., et al. (2006). Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochemical and Biophysical Research Communications, 341, 1135–1140.

    PubMed  CAS  Google Scholar 

  145. Trivedi, H. L., Vanikar, A. V., Thakker, A., et al. (2008). Human adipose tissue-derived mesenchymal stem cells combined with hematopoietic stem cell transplantatio synthesize insulin. Transplantation Proceedings, 40, 1135–1139.

    PubMed  CAS  Google Scholar 

  146. Pessina, A., Eletti, B., Croera, C., Savalli, N., Diodovich, C., & Gribaldo, L. (2004). Pancreas developing markers expressed on human mononuleated umbilical cord blood cells. Biochemical and Biophysical Research Communications, 323, 315–322.

    PubMed  CAS  Google Scholar 

  147. Soria, B. (2001). In vitro differentiation of pancreatic beta-cells. Differentiation, 68, 205–219.

    PubMed  CAS  Google Scholar 

  148. Ende, N., Chen, R., & Redid, A. S. (2004). Transplantation of human umbilical cord blood cells improves glycemia and glomerular hypertrophy in type 2 diabetic mice. Biochemical and Biophysical Research Communications, 321, 168–171.

    PubMed  CAS  Google Scholar 

  149. Yoshida, S., Ishikawa, F., Kawano, N., et al. (2005). Human cord blood derived cells generate insulin producing cells in vivo. Stem Cells, 23, 1409–1416.

    PubMed  Google Scholar 

  150. Denner, L., Bodenburg, Y., Zhao, J. G., et al. (2007). Directed engineering of umbilical cord blood stem cells to produce C-peptide and insulin. Cellular Proliferation, 40, 367–380.

    CAS  Google Scholar 

  151. Gao, F., Wu, D. Q., Hu, Y. H., et al. (2008). In vitro cultivation of islet-like cell clusters from human umbilical cord blood-derived mesenchymal stem cells. Translational Research, 151, 293–302.

    PubMed  CAS  Google Scholar 

  152. Parekh, V. S., Joglekar, M. V., & Hardikar, A. A. (2009). Differentiation of human umbilical cord blood derived mononuclear cells to endocrine pancreatic lineage. Differentiation, 78, 232–240.

    PubMed  CAS  Google Scholar 

  153. Sun, N. Z., & Ji, H. S. (2009). In vitro differentiation of human placenta-derived adherent cells into insulin-producing cells. The Journal of International Medical Research, 37, 400–406.

    PubMed  CAS  Google Scholar 

  154. Parolini, O., Alviano, F., Bagnara, G. P., et al. (2008). Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells, 26, 300–311.

    PubMed  Google Scholar 

  155. Chao, K. C., Chao, K. F., Fu, Y. S., & Liu, S. H. (2008). Islet-like clusters derived mesenchymal stem cells in Wharton’s jelly of the human Umbilical Cord for transplantation to control type 1 diabetes. PLoS ONE, 3, e1451.

    PubMed  Google Scholar 

  156. Palmer, J. P. (2009). C-peptide in the natural history of type 1 diabetes. Diabetes/Metabolism Research and Reviews, 25, 325–328.

    PubMed  CAS  Google Scholar 

  157. Wu, L. F., Wang, N. N., Liu, Y. S., & Wei, X. (2009). Differentiation of Wharton’s Jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells. Tissue Engineering Part A, 15, 2865–2873.

    PubMed  CAS  Google Scholar 

  158. Wang, H. S., Shyu, J. F., Shen, W. S., et al. (2010). Transplantation of insulin producing cells derived from umbilical cord stromal mesenchymal stem cells to treat NOD mice. Cell Transplantation. doi:10.3727/096368910X522270.

    Google Scholar 

  159. Kaneto, H., Matsuoka, T., Kawashima, S., et al. (2009). Role of MafA in pancreatic β-cells. Advanced Drug Delivery Reviews, 61, 489–496.

    Google Scholar 

  160. Faustman, D. L., & Davis, M. (2009). The primacy of CD8 T lymphocytes in type 1 diabetes and implications for therapies. Journal of Molecular Medicine, 87, 1173–1178.

    PubMed  CAS  Google Scholar 

  161. Abdi, R., Fiorina, P., Adra, C. N., Atkinson, M., & Sayegh, M. H. (2008). Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes, 57(7), 1759–1767.

    PubMed  CAS  Google Scholar 

  162. Eizirik, D. L., Colli, M. L., & Ortiz, F. (2009). The role of inflammation in insulitis and β‑cell loss in type 1 diabetes. Nature Reviews Endocrinology, 5, 219–226.

    PubMed  CAS  Google Scholar 

  163. Brennand, K., & Melton, D. (2009). Slow and steady is the key to β-cell replication. Journal of Cellular and Molecular Medicine, 13, 472–487.

    PubMed  CAS  Google Scholar 

  164. Granger, A., & Kushner, J. A. (2009). Cellular origins of b-cell regeneration: a legacy view of historical controversies. Journal of Internal Medicine, 266, 325–338.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Rosemary Allpress for her revision of the English language. This work was partly supported by University of Palermo grants (ex 60% 2007) to RA, FF, GLR. The authors acknowledge the support of the Foundation S. Maugeri (ricerca corrente).

Disclosure The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampiero La Rocca.

Additional information

Rita Anzalone and Melania Lo Iacono contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anzalone, R., Lo Iacono, M., Loria, T. et al. Wharton’s Jelly Mesenchymal Stem Cells as Candidates for Beta Cells Regeneration: Extending the Differentiative and Immunomodulatory Benefits of Adult Mesenchymal Stem Cells for the Treatment of Type 1 Diabetes. Stem Cell Rev and Rep 7, 342–363 (2011). https://doi.org/10.1007/s12015-010-9196-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9196-4

Keywords

Navigation