Skip to main content
Log in

Mesenchymal Stem Cells for Cardiac Therapy: Practical Challenges and Potential Mechanisms

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Cell based treatments for myocardial infarction have demonstrated efficacy in the laboratory and in phase I clinical trials, but the understanding of such therapies remains incomplete. Mesenchymal stem cells (MSCs) are classically defined as maintaining the ability to generate mesenchyme-derived cell types, namely adipocytes, chondrocytes and osteocytes. Recent evidence suggests these cells may in fact harbor much greater potency than originally realized, as several groups have found that MSCs can form cardiac lineage cells in vitro. Additionally, experimental coculture of MSCs with cardiomyocytes appears to improve contractile function of the latter. Bolstered by such findings, several clinical trials have begun to test MSC transplantation for improving post-infarct cardiac function in human patients. The results of these trials have been mixed, underscoring the need to develop a deeper understanding of the underlying stem cell biology. To help synthesize the breadth of studies on the topic, this paper discusses current challenges in the field of MSC cellular therapies for cardiac repair, including methods of cell delivery and the identification of molecular markers that accurately specify the therapeutically relevant mesenchymal cell types. The various possible mechanisms of MSC mediated cardiac improvement, including somatic reprogramming, transdifferentiation, paracrine signaling, and direct electrophysiological coupling are also reviewed. Finally, we consider the traditional cell culture microenvironment, and the promise of cardiac tissue engineering to provide biomimetic in vitro model systems to more faithfully investigate MSC biology, helping to safely and effectively translate exciting discoveries in the laboratory to meaningful therapies in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pittenger, M. F., Mackay, A. M., Beck, S. C., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147.

    Article  CAS  PubMed  Google Scholar 

  2. Song, L., & Tuan, R. S. (2004). Transdifferentiation potential of human mesenchymal stem cells derived from bone marrow. The FASEB Journal, 18, 980–982.

    CAS  Google Scholar 

  3. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41–49.

    Article  CAS  PubMed  Google Scholar 

  4. Hare, J. M., Traverse, J. H., Henry, T. D., et al. (2009). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54, 2277–2286.

    Article  CAS  PubMed  Google Scholar 

  5. Li, Y., Yao, Y., Sheng, Z., Yang, Y., & Ma, G. (2011). Dual-modal tracking of transplanted mesenchymal stem cells after myocardial infarction. International Journal of Nanomedicine, 6, 815–823.

    Article  CAS  PubMed  Google Scholar 

  6. Williams, A. R., Trachtenberg, B., Velazquez, D. L., et al. (2011). Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circulation Research, 108, 792–796.

    Article  CAS  PubMed  Google Scholar 

  7. Quevedo, H. C., Hatzistergos, K. E., Oskouei, B. N., et al. (2009). Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proceedings of the National Academy of Sciences of the United States of America, 106, 14022–14027.

    Article  CAS  PubMed  Google Scholar 

  8. Amado, L. C., Saliaris, A. P., Schuleri, K. H., et al. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 102, 11474–11479.

    Article  CAS  PubMed  Google Scholar 

  9. Miyahara, Y., Nagaya, N., Kataoka, M., et al. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nature Medicine, 12, 459–465.

    Article  CAS  PubMed  Google Scholar 

  10. Koninckx, R., Hensen, K., Daniëls, A., et al. (2009). Human bone marrow stem cells co-cultured with neonatal rat cardiomyocytes display limited cardiomyogenic plasticity. Cytotherapy, 11, 778–792.

    Article  CAS  PubMed  Google Scholar 

  11. Ranganath, S. H., Levy, O., Inamdar, M. S., & Karp, J. M. (2012). Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell, 10, 244–258.

    Article  CAS  PubMed  Google Scholar 

  12. Friis, T., Haack-Sørensen, M., Mathiasen, A. B., et al. (2011). Mesenchymal stromal cell derived endothelial progenitor treatment in patients with refractory angina. Scandinavian Cardiovascular Journal, 45, 161–168.

    Article  PubMed  Google Scholar 

  13. Penn, M. S., Ellis, S., Gandhi, S., et al. (2012). Adventitial delivery of an allogeneic bone marrow-derived adherent stem cell in acute myocardial infarction: phase I clinical study. Circulation Research, 110, 304–311.

    Article  CAS  PubMed  Google Scholar 

  14. Lunde, K., Solheim, S., Aakhus, S., et al. (2006). Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. The New England Journal of Medicine, 355, 1199–1209.

    Article  CAS  PubMed  Google Scholar 

  15. Wollert, K. C., Meyer, G. P., Lotz, J., et al. (2004). Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet, 364, 141–148.

    Article  PubMed  Google Scholar 

  16. Schaefer, A., Zwadlo, C., Fuchs, M., et al. (2010). Long-term effects of intracoronary bone marrow cell transfer on diastolic function in patients after acute myocardial infarction: 5-year results from the randomized-controlled BOOST trial–an echocardiographic study. European Journal of Echocardiography, 11, 165–171.

    Article  PubMed  Google Scholar 

  17. Meyer, G. P., Wollert, K. C., Lotz, J., et al. (2009). Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial. European Heart Journal, 30, 2978–2984.

    Article  PubMed  Google Scholar 

  18. Meyer, G. P., Wollert, K. C., Lotz, J., et al. (2006). Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation, 113, 1287–1294.

    Article  PubMed  Google Scholar 

  19. Dai, W., Hale, S. L., Martin, B. J., et al. (2005). Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation, 112, 214–223.

    Article  PubMed  Google Scholar 

  20. Wen, Y., Meng, L., Xie, J., & Ouyang, J. (2011). Direct autologous bone marrow-derived stem cell transplantation for ischemic heart disease: a meta-analysis. Expert Opinion on Biological Therapy, 11, 559–567.

    Article  PubMed  Google Scholar 

  21. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    Article  CAS  PubMed  Google Scholar 

  22. Acquistapace, A., Bru, T., Lesault, P.-F., et al. (2011). Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells, 29, 812–824.

    Article  CAS  PubMed  Google Scholar 

  23. Gaebel, R., Furlani, D., Sorg, H., et al. (2011). Cell origin of human mesenchymal stem cells determines a different healing performance in cardiac regeneration. PloS One, 6, e15652.

    Article  CAS  PubMed  Google Scholar 

  24. Bayes-Genis, A., Soler-Botija, C., Farré, J., et al. (2010). Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents. Journal of Molecular and Cellular Cardiology, 49, 771–780.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao, Z., Chen, Z., Zhao, X., et al. (2011). Sphingosine-1-phosphate promotes the differentiation of human umbilical cord mesenchymal stem cells into cardiomyocytes under the designated culturing conditions. Journal of Biomedical Science, 18, 37.

    Article  CAS  PubMed  Google Scholar 

  26. Zvaifler, N. J., Marinova-Mutafchieva, L., Adams, G., et al. (2000). Mesenchymal precursor cells in the blood of normal individuals. Arthritis Research, 2, 477–488.

    Article  CAS  PubMed  Google Scholar 

  27. Kurth, T. B., Dell’accio, F., Crouch, V., Augello, A., Sharpe, P. T., & De Bari, C. (2011). Functional mesenchymal stem cell niches in adult mouse knee joint synovium in vivo. Arthritis and Rheumatism, 63, 1289–1300.

    Article  PubMed  Google Scholar 

  28. Tsuji, H., Miyoshi, S., Ikegami, Y., et al. (2010). Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes. Circulation Research, 106, 1613–1623.

    Article  CAS  PubMed  Google Scholar 

  29. Sabatini, F., Petecchia, L., Tavian, M., Jodon de Villeroché, V., Rossi, G. A., & Brouty-Boyé, D. (2005). Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Laboratory Investigation, 85, 962–971.

    Article  CAS  PubMed  Google Scholar 

  30. Kawada, H., Fujita, J., Kinjo, K., et al. (2004). Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood, 104, 3581–3587.

    Article  CAS  PubMed  Google Scholar 

  31. Peister, A., Mellad, J. A., Larson, B. L., Hall, B. M., Gibson, L. F., & Prockop, D. J. (2004). Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood, 103, 1662–1668.

    Article  CAS  PubMed  Google Scholar 

  32. Bonios, M., Terrovitis, J., Chang, C. Y., et al. (2011). Myocardial substrate and route of administration determine acute cardiac retention and lung bio-distribution of cardiosphere-derived cells. Journal of Nuclear Cardiology, 18, 443–450.

    Article  PubMed  Google Scholar 

  33. Dib, N., Khawaja, H., Varner, S., McCarthy, M., & Campbell, A. (2011). Cell therapy for cardiovascular disease: a comparison of methods of delivery. Journal of Cardiovascular Translational Research, 4, 177–181.

    Article  PubMed  Google Scholar 

  34. Wei, F., Wang, T., Liu, J., Du, Y., & Ma, A. (2011). The subpopulation of mesenchymal stem cells that differentiate toward cardiomyocytes is cardiac progenitor cells. Experimental Cell Research, 317, 2661–2670.

    Article  CAS  PubMed  Google Scholar 

  35. Hatzistergos, K. E., Quevedo, H., Oskouei, B. N., et al. (2010). Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circulation Research, 107, 913–922.

    Article  CAS  PubMed  Google Scholar 

  36. Numasawa, Y., Kimura, T., Miyoshi, S., et al. (2011). Treatment of human mesenchymal stem cells with angiotensin receptor blocker improved efficiency of cardiomyogenic transdifferentiation and improved cardiac function via angiogenesis. Stem Cells, 29, 1405–1414.

    CAS  PubMed  Google Scholar 

  37. Siegel. G., Krause, P., Wöhrle, S., et al. (2012). Bone marrow-derived human mesenchymal stem cells express cardiomyogenic proteins but do not exhibit functional cardiomyogenic differentiation potential. Stem Cells and Development, -not available-, ahead of print.

  38. Sassoli, C., Pini, A., Mazzanti, B., et al. (2011). Mesenchymal stromal cells affect cardiomyocyte growth through juxtacrine Notch-1/Jagged-1 signaling and paracrine mechanisms: clues for cardiac regeneration. Journal of Molecular and Cellular Cardiology, 51, 399–408.

    Article  CAS  PubMed  Google Scholar 

  39. Boni, A., Urbanek, K., Nascimbene, A., et al. (2008). Notch1 regulates the fate of cardiac progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 15529–15534.

    Article  CAS  PubMed  Google Scholar 

  40. Abarbanell, A. M., Wang, Y., Herrmann, J. L., et al. (2010). Toll-like receptor 2 mediates mesenchymal stem cell-associated myocardial recovery and VEGF production following acute ischemia-reperfusion injury. American Journal of Physiology: Heart and Circulatory Physiology, 298, H1529–36.

    Article  CAS  PubMed  Google Scholar 

  41. Varoga, D., Paulsen, F., Mentlein, R., et al. (2006). TLR-2-mediated induction of vascular endothelial growth factor (VEGF) in cartilage in septic joint disease. Journal of Pathology, 210, 315–324.

    Article  CAS  PubMed  Google Scholar 

  42. Williams, A. R., & Hare, J. M. (2011). Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circulation Research, 109, 923–940.

    Article  CAS  PubMed  Google Scholar 

  43. Xu, H., Yang, Y.-J., Qian, H.-Y., Tang, Y.-D., Wang, H., & Zhang, Q. (2011). Rosuvastatin treatment activates JAK-STAT Pathway and increases efficacy of allogeneic mesenchymal stem cell transplantation in infarcted hearts. Circulation Journal, 75, 1476–1485.

    Article  CAS  PubMed  Google Scholar 

  44. Loffredo, F. S., Steinhauser, M. L., Gannon, J., & Lee, R. T. (2011). Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair. Cell Stem Cell, 8, 389–398.

    Article  CAS  PubMed  Google Scholar 

  45. Zisa, D., Shabbir, A., Suzuki, G., & Lee, T. (2009). Vascular endothelial growth factor (VEGF) as a key therapeutic trophic factor in bone marrow mesenchymal stem cell-mediated cardiac repair. Biochemical and Biophysical Research Communications, 390, 834–838.

    Article  CAS  PubMed  Google Scholar 

  46. Valiunas, V., Doronin, S., Valiuniene, L., et al. (2004). Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. The Journal of Physiology, 555, 617–626.

    Article  CAS  PubMed  Google Scholar 

  47. Mills, W. R., Mal, N., Kiedrowski, M. J., et al. (2007). Stem cell therapy enhances electrical viability in myocardial infarction. Journal of Molecular and Cellular Cardiology, 42, 304–314.

    Article  CAS  PubMed  Google Scholar 

  48. Serrao, G.S., Turnbull, I.C., Ancukiewicz, D., et al. (2012). Myocyte-Depleted Engineered Cardiac Tissue Support Therapeutic Potential of Mesenchymal Stem Cells. Tissue Engineering Part A, doi:10.1089/ten.TEA.2011.0278.

  49. Chang, M. G., Tung, L., Sekar, R. B., et al. (2006). Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation, 113, 1832–1841.

    Article  PubMed  Google Scholar 

  50. Costa, A. R., Panda, N. C., Yong, S., et al. (2012). Optical mapping of cryoinjured rat myocardium grafted with mesenchymal stem cells. American Journal of Physiology: Heart and Circulatory Physiology, 302, H270–7.

    Article  CAS  PubMed  Google Scholar 

  51. Ramkisoensing, A. A., Pijnappels, D. A., Askar, S. F. A., et al. (2011). Human embryonic and fetal mesenchymal stem cells differentiate toward three different cardiac lineages in contrast to their adult counterparts. PloS One, 6, e24164.

    Article  CAS  PubMed  Google Scholar 

  52. Hwang, N. S., Kim, M. S., Sampattavanich, S., Baek, J. H., Zhang, Z., & Elisseeff, J. (2006). Effects of three-dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells. Stem Cells, 24, 284–291.

    Article  CAS  PubMed  Google Scholar 

  53. Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126, 677–689.

    Article  CAS  PubMed  Google Scholar 

  54. Engler, A. J., Carag-Krieger, C., Johnson, C. P., et al. (2008). Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. Journal of Cell Science, 121, 3794–3802.

    Article  CAS  PubMed  Google Scholar 

  55. Jacot, J. G., McCulloch, A. D., & Omens, J. H. (2008). Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophysical Journal, 95, 3479–3487.

    Article  CAS  PubMed  Google Scholar 

  56. Domian, I. J., Chiravuri, M., van der Meer, P., et al. (2009). Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science, 326, 426–429.

    Article  CAS  PubMed  Google Scholar 

  57. Tulloch, N. L., Muskheli, V., Razumova, M. V., et al. (2011). Growth of engineered human myocardium with mechanical loading and vascular coculture. Circulation Research, 109, 47–59.

    Article  CAS  PubMed  Google Scholar 

  58. Schaaf, S., Shibamiya, A., Mewe, M., et al. (2011). Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PloS One, 6, e26397.

    Article  CAS  PubMed  Google Scholar 

  59. Chen, C.-H., Wei, H.-J., Lin, W.-W., et al. (2008). Porous tissue grafts sandwiched with multilayered mesenchymal stromal cell sheets induce tissue regeneration for cardiac repair. Cardiovascular Research, 80, 88–95.

    Article  CAS  PubMed  Google Scholar 

  60. Simpson, D. L., Boyd, N. L., Kaushal, S., Stice, S. L., & Dudley, S. C. (2012). Use of human embryonic stem cell derived-mesenchymal cells for cardiac repair. Biotechnology and Bioengineering, 109, 274–283.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support by the Mount Sinai Medical Scientist Training Program Grant T32-GM007280 (TJC) and NIH/NHLBI R21-HL095980 (KDC).

Conflicts of Interest

The authors declare no potential conflicts of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin D. Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cashman, T.J., Gouon-Evans, V. & Costa, K.D. Mesenchymal Stem Cells for Cardiac Therapy: Practical Challenges and Potential Mechanisms. Stem Cell Rev and Rep 9, 254–265 (2013). https://doi.org/10.1007/s12015-012-9375-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-012-9375-6

Keywords

Navigation