Skip to main content

Advertisement

Log in

Impact of Energy Intake and Expenditure on Neuronal Plasticity

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The Roman poet Horace was among the first to recognize that when “clogged with yesterday’s excess, the body drags the mind down with it.” Although considerable attention has been paid in neuroscience to the enhancement of neuronal function by wheel running and caloric restriction, far less is known about the other side of this issue. What are the consequences of unhealthy habits to central nervous system function? Prolonged exposure to excessive caloric intake impairs neuronal function and also contributes to obesity and other risk factors for diabetes. Diabetes, a disease characterized by reduced sensitivity to glucose and insulin, is also associated with deficits in brain structure and function. In contrast, enhancement of somatic metabolism by wheel running or caloric restriction improves central neuroplasticity. Generalizing across studies reveals a relationship between global metabolic efficiency and neuroplasticity in the hippocampus, a brain region that is essential for learning and memory. The specific principles upheld by these findings are suggestive of a continuum, with global metabolic alterations fluctuating in concert with neuroplasticity in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adlard, P. A., & Cotman, C. W. (2004). Voluntary exercise protects against stress-induced decreases in brain-derived neurotrophic factor protein expression. Neuroscience, 124, 985–992.

    Article  PubMed  CAS  Google Scholar 

  • Adlard, P. A., Perreau, V. M., Pop, V., & Cotman, C. W. (2005). Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. Journal of Neuroscience, 25, 4217–4221.

    Article  PubMed  CAS  Google Scholar 

  • Altman, J. (1962). Are new neurons formed in the brains of adult mammals? Science, 135, 1127–1128.

    Article  PubMed  CAS  Google Scholar 

  • Andrade, J. P., Castanheira-Vale, A. J., Paz-Dias, P. G., Madeira, M. D., & Paula-Barbosa, M. M. (1996). The dendritic trees of neurons from the hippocampal formation of protein-deprived adult rats. A quantitative Golgi study. Experimental Brain Research, 109, 419–433.

    CAS  Google Scholar 

  • Andrade, J. P., Lukoyanov, N. V., & Paula-Barbosa, M. M. (2002). Chronic food restriction is associated with subtle dendritic alterations in granule cells of the rat hippocampal formation. Hippocampus, 12, 149–164.

    Article  PubMed  Google Scholar 

  • Asztely, F., Kokaia, M., Olofsdotter, K., Ortegren, U., & Lindvall, O. (2000). Afferent-specific modulation of short-term synaptic plasticity by neurotrophins in dentate gyrus. European Journal of Neuroscience, 12, 662–669.

    Article  CAS  Google Scholar 

  • Barsh, G. S., Farooqi, I. S., & O’Rahilly, S. (2000). Genetics of body-weight regulation. Nature, 404, 644–651.

    PubMed  CAS  Google Scholar 

  • Biessels, G. J., Kamal, A., Ramakers, G. M., Urban, I. J., Spruijt, B. M., Erkelens, D. W., et al. (1996). Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes, 45(9), 1259–1266.

    Article  PubMed  CAS  Google Scholar 

  • Bliss, T. V., & Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232, 331–356.

    PubMed  CAS  Google Scholar 

  • Bloomgarden, Z. T. (2004). Type 2 diabetes in the young: The evolving epidemic. Diabetes Care, 27, 998–1010.

    Article  PubMed  Google Scholar 

  • Broadbent, N. J., Squire, L. R., & Clark, R. E. (2004). Spatial memory, recognition memory, and the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 101, 14515–14520.

    Article  PubMed  CAS  Google Scholar 

  • Burkhalter, J., Fiumelli, H., Allaman, I., Chatton, J. Y., & Martin, J. L. (2003). Brain-derived neurotrophic factor stimulates energy metabolism in developing cortical neurons. Journal of Neuroscience, 23, 8212–8220.

    PubMed  CAS  Google Scholar 

  • Burns, J. M., Donnelly, J. E., Anderson, H. S., Mayo, M. S., Spencer-Gardner, L., Thomas, G., et al. (2007). Peripheral insulin and brain structure in early Alzheimer disease. Neurology, 69, 1094–1104.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, H. A., & McKay, R. D. (2001). Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. Journal of Comparative Neurology, 435, 406–417.

    Article  PubMed  CAS  Google Scholar 

  • Carro, E., Trejo, J. L., Busiguina, S., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. Journal of Neuroscience, 21, 5678–5684.

    PubMed  CAS  Google Scholar 

  • Chen, M. J., & Russo-Neustadt, A. A. (2007). Running exercise- and antidepressant-induced increases in growth and survival-associated signaling molecules are IGF-dependent. Growth Factors, 25, 118–131.

    Article  PubMed  CAS  Google Scholar 

  • Clark, R. E., Zola, S. M., & Squire, L. R. (2000). Impaired recognition memory in rats after damage to the hippocampus. Journal of Neuroscience, 20, 8853–8860.

    PubMed  CAS  Google Scholar 

  • Colino, A., & Malenka, R. C. (1993). Mechanisms underlying induction of long-term potentiation in rat medial and lateral perforant paths in vitro. Journal of Neurophysiology, 69, 1150–1159.

    PubMed  CAS  Google Scholar 

  • Convit, A., Wolf, O. T., Tarshish, C., & de Leon, M. J. (2003). Reduced glucose tolerance is associated with poor memory performance and hippocampal atrophy among normal elderly. Proceedings of the National Academy of Sciences of the United States of America, 100, 2019–2022.

    Article  PubMed  CAS  Google Scholar 

  • Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health, key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30, 464–472.

    Article  PubMed  CAS  Google Scholar 

  • Dandona, P., Aljada, A., & Bandyopadhyay, A. (2004). Inflammation: The link between insulin resistance, obesity and diabetes. Trends in Immunology, 25(1), 4–7.

    Article  PubMed  CAS  Google Scholar 

  • DelParigi, A., Chen, K., Salbe, A. D., Hill, J. O., Wing, R. R., Reiman, E. M., et al. (2004). Persistence of abnormal neural responses to a meal in postobese individuals. International Journal of Obesity and Related Metabolic Disorders, 28(3), 370–377.

    Article  PubMed  CAS  Google Scholar 

  • den Heijer, T., Vermeer, S. E., van Dijk, E. J., Prins, N. D., Koudstaal, P. J., Hofman, A., et al. (2003). Type 2 diabetes and atrophy of medial temporal lobe structures on brain. MRI. Diabetologia, 46, 1604–1610.

    Article  Google Scholar 

  • Dore, S., Kar, S., & Quirion, R. (1997). Rediscovering an old friend, IGF-I, potential use in the treatment of neurodegenerative diseases. Trends in Neurosciences, 20, 326–331.

    Article  PubMed  CAS  Google Scholar 

  • Duan, W., Guo, Z., Jiang, H., Ware, M., & Mattson, M. P. (2003). Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor. Endocrinology, 144, 2446–2453.

    Article  PubMed  CAS  Google Scholar 

  • Eadie, B. D., Redila, V. A., & Christie, B. R. (2005). Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. Journal of Comparative Neurology, 486, 39–47.

    Article  PubMed  Google Scholar 

  • Engert, F., & Bonhoeffer, T. (1999). Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature, 399, 66–70.

    Article  PubMed  CAS  Google Scholar 

  • Esposito, M. S., Piatti, V. C., Laplagne, D. A., Morgenstern, N. A., Ferrari, C. C., Pitossi, F. J., et al. (2005). Neuronal differentiation in the adult hippocampus recapitulates embryonic development. Journal of Neuroscience, 25, 10074–10086.

    Article  PubMed  CAS  Google Scholar 

  • Farmer, J., Zhao, X., van Praag, H., Wodtke, K., Gage, F. H., & Christie, B. R. (2004). Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience, 124, 71–79.

    Article  PubMed  CAS  Google Scholar 

  • Fedulov, V., Rex, C. S., Simmons, D. A., Palmer, L., Gall, C. M., & Lynch, G. (2007). Evidence that long-term potentiation occurs within individual hippocampal synapses during learning. Journal of Neuroscience, 27, 8031–8039.

    Article  PubMed  CAS  Google Scholar 

  • Fiala, B. A., Joyce, J. N., & Greenough, W. T. (1978). Environmental complexity modulates growth of granule cell dendrites in developing but not adult hippocampus of rats. Experimental Neurology, 59, 372–383.

    Article  PubMed  CAS  Google Scholar 

  • Fontán-Lozano, A., Sáez-Cassanelli, J. L., Inda, M. C., de los Santos-Arteaga, M., Sierra-Domínguez, S. A., López-Lluch, G., et al. (2007). Caloric restriction increases learning consolidation and facilitates synaptic plasticity through mechanisms dependent on NR2B subunits of the NMDA receptor. Journal of Neuroscience, 27, 10185–10195.

    Article  PubMed  CAS  Google Scholar 

  • Ge, S., Goh, E. L., Sailor, K. A., Kitabatake, Y., Ming, G. L., & Song, H. (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439, 589–593.

    Article  PubMed  CAS  Google Scholar 

  • Ge, S., Yang, C. H., Hsu, K. S., Ming, G. L., & Song, H. (2007). A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron, 54, 559–566.

    Article  PubMed  CAS  Google Scholar 

  • Gold, S. M., Dziobek, I., Sweat, V., Tirsi, A., Rogers, K., Bruehl, H., et al. (2007). Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia, 50, 711–719.

    Article  PubMed  CAS  Google Scholar 

  • Green, K. N., Billings, L. M., Roozendaal, B., McGaugh, J. L., & LaFerla, F. M. (2006). Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. Journal of Neuroscience, 26, 9047–9056.

    Article  PubMed  CAS  Google Scholar 

  • Halagappa, V. K., Guo, Z., Pearson, M., Matsuoka, Y., Cutler, R. G., Laferla, F. M., et al. (2007). Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease. Neurobiology of Disease, 26, 212–220.

    Article  PubMed  CAS  Google Scholar 

  • Hanse, E., & Gustafsson, B. (1992). Long-term Potentiation and Field EPSPs in the Lateral and Medial Perforant Paths in the Dentate Gyrus In Vitro, a Comparison. European Journal of Neuroscience, 4, 1191–1201.

    Article  PubMed  Google Scholar 

  • Hastings, N. B., & Gould, E. (1999). Rapid extension of axons into the CA3 region by adult-generated granule cells. Journal of Comparative Neurology, 413, 146–154.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, N. L., & Nowakowski, R. S. (2002). Dynamics of cell proliferation in the adult dentate gyrus of two inbred strains of mice. Brain Research. Developmental Brain Research, 134, 77–85.

    Article  PubMed  CAS  Google Scholar 

  • Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New York: John Wiley and Sons, Inc.

    Google Scholar 

  • Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart, exercise effects on brain and cognition. Nature Reviews in the Neurosciences, 9, 58–65.

    Article  PubMed  CAS  Google Scholar 

  • Ho, L., Qin, W., Pompl, P. N., Xiang, Z., Wang, J., Zhao, Z., et al. (2004). Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB Journal, 18, 902–904.

    PubMed  CAS  Google Scholar 

  • Holtmaat, A. J., Trachtenberg, J. T., Wilbrecht, L., Shepherd, G. M., Zhang, X., Knott, G. W., et al. (2005). Transient and persistent dendritic spines in the neocortex in vivo. Neuron, 45, 279–291.

    Article  PubMed  CAS  Google Scholar 

  • Jackson-Guilford, J., Leander, J. D., & Nisenbaum, L. K. (2000). The effect of streptozotocin-induced diabetes on cell proliferation in the rat dentate gyrus. Neuroscience Letters, 293, 91–94.

    Article  PubMed  CAS  Google Scholar 

  • Jagust, W., Harvey, D., Mungas, D., & Haan, M. (2005). Central obesity and the aging brain. Archives of Neurology, 62(10), 1545–1548.

    Article  PubMed  Google Scholar 

  • Jakubs, K., Nanobashvili, A., Bonde, S., Ekdahl, C. T., Kokaia, Z., Kokaia, M., et al. (2006). Environment matters, synaptic properties of neurons born in the epileptic adult brain develop to reduce excitability. Neuron, 52, 1047–1059.

    Article  PubMed  CAS  Google Scholar 

  • Juraska, J. M., Fitch, J. M., Henderson, C., & Rivers, N. (1985). Sex differences in dendritic branching of dentate granule cells following differential experience. Brain Research, 333, 73–80.

    Article  PubMed  CAS  Google Scholar 

  • Kamal, A., Biessels, G. J., Urban, I. J., & Gispen, W. H. (1999). Hippocampal synaptic plasticity in streptozotocin-diabetic rats, impairment of long-term potentiation and facilitation of long-term depression. Neuroscience, 90, 737–745.

    Article  PubMed  CAS  Google Scholar 

  • Kempermann, G., Jessberger, S., Steiner, B., & Kronenberg, G. (2004). Milestones of neuronal development in the adult hippocampus. Trends in Neurosciences, 27, 447–452.

    Article  PubMed  CAS  Google Scholar 

  • Kim, E., Sohn, S., Lee, M., Jung, J., Kineman, R. D., & Park, S. (2006). Differential responses of the growth hormone axis in two rat models of streptozotocin-induced insulinopenic diabetes. Journal of Endocrinology, 188, 263–270.

    Article  PubMed  CAS  Google Scholar 

  • Korf, E. S., White, L. R., Scheltens, P., & Launer, L. J. (2006). Brain aging in very old men with type 2 diabetes, the Honolulu-Asia Aging Study. Diabetes Care, 29, 2268–2274.

    Article  PubMed  Google Scholar 

  • Kozorovitskiy, Y., Gross, C. G., Kopil, C., Battaglia, L., McBreen, M., Stranahan, A. M., et al. (2005). Experience induces structural and biochemical changes in the adult primate brain. Proceedings of the National Academy of Sciences of the United States of America, 102, 17478–17482.

    Article  PubMed  CAS  Google Scholar 

  • Kumari, R., Willing, L. B., Krady, J. K., Vannucci, S. J., & Simpson, I. A. (2007). Impaired wound healing after cerebral hypoxia-ischemia in the diabetic mouse. Journal of Cerebral Blood Flow and Metabolism, 27, 710–718.

    PubMed  CAS  Google Scholar 

  • LaManna, J. C., & Harik, S. I. (1985). Regional comparisons of brain glucose influx. Brain Research, 326, 299–305.

    Article  PubMed  CAS  Google Scholar 

  • Lang, C., Barco, A., Zablow, L., Kandel, E. R., Siegelbaum, S. A., & Zakharenko, S. S. (2004). Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America, 101, 16665–16670.

    Article  PubMed  CAS  Google Scholar 

  • Larson, E. B., Wang, L., Bowen, J. D., McCormick, W. C., Teri, L., Crane, P., et al. (2006). Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Annals of Internal Medicine, 144, 73–81.

    PubMed  Google Scholar 

  • Lee, J., Duan, W., & Mattson, M. P. (2002). Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. Journal of Neurochemistry, 82, 1367–1375.

    Article  PubMed  CAS  Google Scholar 

  • Leuner, B., Gould, E., & Shors, T. J. (2006). Is there a link between adult neurogenesis and learning? Hippocampus, 16, 216–224.

    Article  PubMed  Google Scholar 

  • Li, X. L., Aou, S., Oomura, Y., Hori, N., Fukunaga, K., & Hori, T. (2002). Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neuroscience, 113, 607–615.

    Article  PubMed  CAS  Google Scholar 

  • Lindqvist, A., Mohapel, P., Bouter, B., Frielingsdorf, H., Pizzo, D., Brundin, P., et al. (2006). High-fat diet impairs hippocampal neurogenesis in male rats. European Journal of Neurology, 13, 1385–1388.

    Article  PubMed  CAS  Google Scholar 

  • Lupien, S. B., Bluhm, E. J., & Ishii, D. N. (2003). Systemic insulin-like growth factor-I administration prevents cognitive impairment in diabetic rats, and brain IGF regulates learning/memory in normal adult rats. Journal of Neuroscience Research, 74, 512–523.

    Article  PubMed  CAS  Google Scholar 

  • Magarinos, A. M., & McEwen, B. S. (2000). Experimental diabetes in rats causes hippocampal dendritic and synaptic reorganization and increased glucocorticoid reactivity to stress. Proceedings of the National Academy of Sciences of the United States of America, 97, 11056–11061.

    Article  PubMed  CAS  Google Scholar 

  • Maher, P., Akaishi, T., & Abe, K. (2006). Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proceedings of the National Academy of Sciences of the United States of America, 103, 16568–16573.

    Article  PubMed  CAS  Google Scholar 

  • Mandyam, C. D., Harburg, G. C., & Eisch, A. J. (2007). Determination of key aspects of precursor cell proliferation, cell cycle length and kinetics in the adult mouse subgranular zone. Neuroscience, 146, 108–122.

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Tellez, R., Gómez-Villalobos Mde, J., & Flores, G. (2005). Alteration in dendritic morphology of cortical neurons in rats with diabetes mellitus induced by streptozotocin. Brain Research, 1048, 108–115.

    Article  PubMed  CAS  Google Scholar 

  • Matsuo, N., Reijmers, L., & Mayford, M. (2008). Spine-type-specific recruitment of newly synthesized AMPA receptors with learning. Science, 319(5866), 1104–1107.

    Article  PubMed  CAS  Google Scholar 

  • Mayeux, R. (2003). Epidemiology of neurodegeneration. Annual Review of Neuroscience, 26, 81–104.

    Article  PubMed  CAS  Google Scholar 

  • McEwen, B. S. (2001). Plasticity of the hippocampus: Adaptation to chronic stress and allostatic load. Annals of the New York Academy of Sciences, 933, 265–277.

    PubMed  CAS  Google Scholar 

  • McEwen, B. S., & Reagan, L. P. (2004). Glucose transporter expression in the central nervous system, relationship to synaptic function. European Journal of Pharmacology, 490, 13–24.

    Article  PubMed  CAS  Google Scholar 

  • Messier, C. (2005). Impact of impaired glucose tolerance and type 2 diabetes on cognitive aging. Neurobiology of Aging, 26(Suppl 1), 26–30.

    Article  PubMed  CAS  Google Scholar 

  • Mielke, J. G., Nicolitch, K., Avellaneda, V., Earlam, K., Ahuja, T., Mealing, G., et al. (2006). Longitudinal study of the effects of a high-fat diet on glucose regulation, hippocampal function, and cerebral insulin sensitivity in C57BL/6 mice. Behavioural Brain Research, 175(2), 374–382.

    Article  PubMed  CAS  Google Scholar 

  • Molteni, R., Barnard, R. J., Ying, Z., Roberts, C. K., & Gomez-Pinilla, F. (2002). A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience, 112, 803–814.

    Article  PubMed  CAS  Google Scholar 

  • Morris, R. G. (2001). Episodic-like memory in animals, psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356, 1453–1465.

    Article  PubMed  CAS  Google Scholar 

  • Morris, R. G., Anderson, E., Lynch, G. S., & Baudry, M. (1986). Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature, 319, 774–776.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, T., Tsuchida, A., Itakura, Y., Nonomura, T., Ono, M., Hirota, F., et al. (2000). Brain-derived neurotrophic factor regulates glucose metabolism by modulating energy balance in diabetic mice. Diabetes, 49, 436–444.

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa, K., McHugh, T. J., Wilson, M. A., & Tonegawa, S. (2004). NMDA receptors, place cells and hippocampal spatial memory. Nature Reviews in the Neurosciences, 5, 361–372.

    Article  PubMed  CAS  Google Scholar 

  • Neeper, S. A., Gomez-Pinilla, F., Choi, J., & Cotman, C. (1995). Exercise and brain neurotrophins. Nature, 373, 109.

    Article  PubMed  CAS  Google Scholar 

  • Niedernhofer, L. J., Garinis, G. A., Raams, A., Lalai, A. S., Robinson, A. R., Appeldoorn, E., et al. (2006). A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature, 444, 1038–1043.

    Article  PubMed  CAS  Google Scholar 

  • Nikonenko, I., Jourdain, P., Alberi, S., Toni, N., & Muller, D. (2002). Activity-induced changes of spine morphology. Hippocampus, 12, 585–591.

    Article  PubMed  Google Scholar 

  • Pasquier, F., Boulogne, A., Leys, D., & Fontaine, P. (2006). Diabetes mellitus and dementia. Diabetes & Metabolism, 32, 403–414.

    Article  PubMed  CAS  Google Scholar 

  • Pereira, A. C., Huddleston, D. E., Brickman, A. M., Sosunov, A. A., Hen, R., McKhann, G. M., et al. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 104, 5638–5643.

    Article  PubMed  CAS  Google Scholar 

  • Pysh, J. J., & Weiss, M. (1979). Exercise during development induces an increase in Purkinje cell dendritic tree size. Science, 206, 230–232.

    Article  PubMed  CAS  Google Scholar 

  • Redila, V. A., & Christie, B. R. (2006). Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience, 137, 1299–1307.

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky, R. M. (1986). Glucocorticoid toxicity in the hippocampus, reversal by supplementation with brain fuels. Journal of Neuroscience, 6, 2240–2244.

    PubMed  CAS  Google Scholar 

  • Sauvage, M. M., Fortin, N. J., Owens, C. B., Yonelinas, A. P., & Eichenbaum, H. (2008). Recognition memory, opposite effects of hippocampal damage on recollection and familiarity. Nature Neuroscience, 11, 16–18.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Hieber, C., Jonas, P., & Bischofberger, J. (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 429, 184–187.

    Article  PubMed  CAS  Google Scholar 

  • Sorra, K. E., & Harris, K. M. (2000). Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus, 10, 501–511.

    Article  PubMed  CAS  Google Scholar 

  • Squire, L. R., Wixted, J. T., & Clark, R. E. (2007). Recognition memory and the medial temporal lobe, a new perspective. Nature Reviews in the Neurosciences, 8, 872–883.

    Article  PubMed  CAS  Google Scholar 

  • Stranahan, A. M., Arumugam, T. V., Cutler, R. G., Lee, K., Egan, J. M., & Mattson, M. P. (2008). Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nature Neuroscience, 11(3), 309–317.

    Article  PubMed  CAS  Google Scholar 

  • Stranahan, A. M., Khalil, D., & Gould, E. (2006). Social isolation delays the positive effects of running on adult neurogenesis. Nature Neuroscience, 9, 526–533.

    Article  PubMed  CAS  Google Scholar 

  • Stranahan, A. M., Khalil, D., & Gould, E. (2007). Running induces widespread structural alterations in the hippocampus and entorhinal cortex. Hippocampus, 17, 1017–1022.

    Article  PubMed  Google Scholar 

  • Tang, Y. P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., et al. (1999). Genetic enhancement of learning and memory in mice. Nature, 401, 63–69.

    Article  PubMed  CAS  Google Scholar 

  • Tataranni, P. A. (2000). Mechanisms of weight gain in humans. European Review for Medical and Pharmacological Sciences, 4, 1–7.

    PubMed  CAS  Google Scholar 

  • Toni, N., Teng, E. M., Bushong, E. A., Aimone, J. B., Zhao, C., Consiglio, A., et al. (2007). Synapse formation on neurons born in the adult hippocampus. Nature Neuroscience, 10, 727–734.

    Article  PubMed  CAS  Google Scholar 

  • Trejo, J. L., Carro, E., & Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. Journal of Neuroscience, 21, 1628–1634.

    PubMed  CAS  Google Scholar 

  • Van der Borght, K., Havekes, R., Bos, T., Eggen, B. J., & Van der Zee, E. A. (2007). Exercise improves memory acquisition and retrieval in the Y-maze task: Relationship with hippocampal neurogenesis. Behavioral Neuroscience, 121, 324–334.

    Article  PubMed  Google Scholar 

  • van Praag, H., Christie, B. R., Sejnowski, T. J., & Gage, F. H. (1999a). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proceedings of the National Academy of Sciences of the United States of America, 96, 13427–13431.

    Article  PubMed  Google Scholar 

  • van Praag, H., Kempermann, G., & Gage, F. H. (1999b). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2, 266–270.

    Article  PubMed  Google Scholar 

  • van Praag, H., Schinder, A. F., Christie, B. R., Toni, N., Palmer, T. D., & Gage, F. H. (2002). Functional neurogenesis in the adult hippocampus. Nature, 415, 1030–1034.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G. J., Yang, J., Volkow, N. D., Telang, F., Ma, Y., Zhu, W., et al. (2006). Gastric stimulation in obese subjects activates the hippocampus and other regions involved in brain reward circuitry. Proceedings of the National Academy of Sciences of the United States of America, 103(42), 15641–15645.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, Y., Gould, E., & McEwen, B. S. (1992). Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Research, 588, 341–345.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, S. A., Kronenberg, G., Lehmann, K., Blankenship, A., Overall, R., Staufenbiel, M., et al. (2006). Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s disease. Biological Psychiatry, 60(12), 1314–1323.

    Article  PubMed  CAS  Google Scholar 

  • Yeo, G. S., Connie Hung, C. C., Rochford, J., Keogh, J., Gray, J., Sivaramakrishnan, S., et al. (2004). A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nature Neuroscience, 7, 1187–1189.

    Article  PubMed  CAS  Google Scholar 

  • Yuste, R., & Bonhoeffer, T. (2001). Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annual Review of Neuroscience, 24, 1071–1089.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W. J., Tan, Y. F., Yue, J. T., Vranic, M., & Wojtowicz, J. M. (2008). Impairment of hippocampal neurogenesis in streptozotocin-treated diabetic rats. Acta Neurologica Scandinavica, 117, 205–210.

    Article  PubMed  Google Scholar 

  • Zhao, C., Teng, E. M., Summers, R. G., Jr., Ming, G. L., & Gage, F. H. (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. Journal of Neuroscience, 26, 3–11.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Q., Homma, K. J., & Poo, M. M. (2004). Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron, 44, 749–757.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a NRSA predoctoral fellowship to A. S. and by the National Institute on Aging Intramural Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark P. Mattson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stranahan, A.M., Mattson, M.P. Impact of Energy Intake and Expenditure on Neuronal Plasticity. Neuromol Med 10, 209–218 (2008). https://doi.org/10.1007/s12017-008-8043-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-008-8043-0

Keywords

Navigation