Skip to main content

Advertisement

Log in

Creatine and Its Potential Therapeutic Value for Targeting Cellular Energy Impairment in Neurodegenerative Diseases

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Substantial evidence indicates bioenergetic dysfunction and mitochondrial impairment contribute either directly and/or indirectly to the pathogenesis of numerous neurodegenerative disorders. Treatment paradigms aimed at ameliorating this cellular energy deficit and/or improving mitochondrial function in these neurodegenerative disorders may prove to be useful as a therapeutic intervention. Creatine is a molecule that is produced both endogenously, and acquired exogenously through diet, and is an extremely important molecule that participates in buffering intracellular energy stores. Once creatine is transported into cells, creatine kinase catalyzes the reversible transphosphorylation of creatine via ATP to enhance the phosphocreatine energy pool. Creatine kinase enzymes are located at strategic intracellular sites to couple areas of high energy expenditure to the efficient regeneration of ATP. Thus, the creatinekinase/phosphocreatine system plays an integral role in energy buffering and overall cellular bioenergetics. Originally, exogenous creatine supplementation was widely used only as an ergogenic aid to increase the phosphocreatine pool within muscle to bolster athletic performance. However, the potential therapeutic value of creatine supplementation has recently been investigated with respect to various neurodegenerative disorders that have been associated with bioenergetic deficits as playing a role in disease etiology and/or progression which include; Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis (ALS), and Huntington’s disease. This review discusses the contribution of mitochondria and bioenergetics to the progression of these neurodegenerative diseases and investigates the potential neuroprotective value of creatine supplementation in each of these neurological diseases. In summary, current literature suggests that exogenous creatine supplementation is most efficacious as a treatment paradigm in Huntington’s and Parkinson’s disease but appears to be less effective for ALS and Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams, J. M., & Cory, S. (1998). The Bcl-2 protein family: Arbiters of cell survival. Science, 281, 1322–1326. doi:10.1126/science.281.5381.1322.

    PubMed  CAS  Google Scholar 

  • Adhihetty, P. J., & Hood, D. A. (2003). Mechanisms of apoptosis in skeletal muscle. Basic and applied myology, 13, 171–179.

    Google Scholar 

  • Adhihetty, P. J., Irrcher, I., Joseph, A. M., Ljubicic, V., & Hood, D. A. (2003). Plasticity of skeletal muscle mitochondria in response to contractile activity. Experimental Physiology, 88, 99–107. doi:10.1113/eph8802505.

    PubMed  CAS  Google Scholar 

  • Aksenov, M., Aksenova, M., Butterfield, D. A., & Markesbery, W. R. (2000). Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. Journal of Neurochemistry, 74, 2520–2527. doi:10.1046/j.1471-4159.2000.0742520.x.

    PubMed  CAS  Google Scholar 

  • Alston, T. A., Mela, L., & Bright, H. J. (1977). 3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 74, 3767–3771. doi:10.1073/pnas.74.9.3767.

    PubMed  CAS  Google Scholar 

  • Andreassen, O. A., Dedeoglu, A., Ferrante, R. J., Jenkins, B. G., Ferrante, K. L., Thomas, M., et al. (2001). Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington’s disease. Neurobiology of Disease, 8, 479–491. doi:10.1006/nbdi.2001.0406.

    PubMed  CAS  Google Scholar 

  • Andres, R. H., Ducray, A. D., Schlattner, U., Wallimann, T., & Widmer, H. R. (2008). Functions and effects of creatine in the central nervous system. Brain Research Bulletin, 76, 329–343. doi:10.1016/j.brainresbull.2008.02.035.

    PubMed  CAS  Google Scholar 

  • Baines, C. P., Kaiser, R. A., Purcell, N. H., Blair, N. S., Osinska, H., Hambleton, M. A., et al. (2005). Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature, 434, 658–662. doi:10.1038/nature03434.

    PubMed  CAS  Google Scholar 

  • Baker, S. K., & Tarnopolsky, M. A. (2003). Targeting cellular energy production in neurological disorders. Expert Opinion on Investigational Drugs, 12, 1655–1679. doi:10.1517/13543784.12.10.1655.

    PubMed  CAS  Google Scholar 

  • Beal, M. F., Brouillet, E., Jenkins, B. G., Ferrante, R. J., Kowall, N. W., Miller, J. M., et al. (1993). Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. Journal of Neuroscience, 13, 4181–4192.

    PubMed  CAS  Google Scholar 

  • Beal, M. F. (1995). Aging, energy, and oxidative stress in neurodegenerative diseases. Annals of Neurology, 38, 357–366. doi:10.1002/ana.410380304.

    PubMed  CAS  Google Scholar 

  • Beal, M. F. (1996). Mitochondria, free radicals, and neurodegeneration. Current Opinion in Neurobiology, 6, 661–666. doi:10.1016/S0959-4388(96)80100-0.

    PubMed  CAS  Google Scholar 

  • Beal, M. F. (2000a). Mitochondria and the pathogenesis of ALS. Brain, 123(Pt 7), 1291–1292. doi:10.1093/brain/123.7.1291.

    PubMed  Google Scholar 

  • Beal, M. F. (2000b). Energetics in the pathogenesis of neurodegenerative diseases. Trends in Neurosciences, 23, 298–304. doi:10.1016/S0166-2236(00)01584-8.

    PubMed  CAS  Google Scholar 

  • Beal, M. F. (2000c). Limited-time exposure to mitochondrial toxins may lead to chronic progressive neurodegenerative diseases. Movement Disorders, 15, 434–435. doi:10.1002/1531-8257(200005)15:3<434::AID-MDS1002>3.0.CO;2-Q.

    PubMed  CAS  Google Scholar 

  • Beal, M. F. (2003). Bioenergetic approaches for neuroprotection in Parkinson’s disease. Annals of Neurology, 53(Suppl 3), S39–S47. doi:10.1002/ana.10479.

    PubMed  CAS  Google Scholar 

  • Beal, M. F., & Ferrante, R. J. (2004). Experimental therapeutics in transgenic mouse models of Huntington’s disease. Nature Reviews. Neuroscience, 5, 373–384. doi:10.1038/nrn1386.

    PubMed  CAS  Google Scholar 

  • Benzi, G., & Ceci, A. (2001). Creatine as nutritional supplementation and medicinal product. Journal of Sports Medicine and Physical Fitness, 41, 1–10.

    PubMed  CAS  Google Scholar 

  • Bessman, S. P., & Geiger, P. J. (1981). Transport of energy in muscle: The phosphorylcreatine shuttle. Science, 211, 448–452. doi:10.1126/science.6450446.

    PubMed  CAS  Google Scholar 

  • Bindoff, L. A., Birch-Machin, M., Cartlidge, N. E., Parker, W. D., Jr., & Turnbull, D. M. (1989). Mitochondrial function in Parkinson’s disease. Lancet, 2, 49. doi:10.1016/S0140-6736(89)90291-2.

    PubMed  CAS  Google Scholar 

  • Boero, J., Qin, W., Cheng, J., Woolsey, T. A., Strauss, A. W., & Khuchua, Z. (2003). Restricted neuronal expression of ubiquitous mitochondrial creatine kinase: Changing patterns in development and with increased activity. Molecular and Cellular Biochemistry, 244, 69–76. doi:10.1023/A:1022409101641.

    PubMed  CAS  Google Scholar 

  • Bogdanov, M. B., Ferrante, R. J., Kuemmerle, S., Klivenyi, P., & Beal, M. F. (1998a). Increased vulnerability to 3-nitropropionic acid in an animal model of Huntington’s disease. Journal of Neurochemistry, 71, 2642–2644.

    PubMed  CAS  Google Scholar 

  • Bogdanov, M. B., Ramos, L. E., Xu, Z., & Beal, M. F. (1998b). Elevated “hydroxyl radical” generation in vivo in an animal model of amyotrophic lateral sclerosis. Journal of Neurochemistry, 71, 1321–1324.

    PubMed  CAS  Google Scholar 

  • Brewer, G. J., & Wallimann, T. W. (2000). Protective effect of the energy precursor creatine against toxicity of glutamate and beta-amyloid in rat hippocampal neurons. Journal of Neurochemistry, 74, 1968–1978. doi:10.1046/j.1471-4159.2000.0741968.x.

    PubMed  CAS  Google Scholar 

  • Brouillet, E., Jenkins, B. G., Hyman, B. T., Ferrante, R. J., Kowall, N. W., Srivastava, R., et al. (1993). Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid. Journal of Neurochemistry, 60, 356–359. doi:10.1111/j.1471-4159.1993.tb05859.x.

    PubMed  CAS  Google Scholar 

  • Brouillet, E., Hantraye, P., Ferrante, R. J., Dolan, R., Leroy-Willig, A., Kowall, N. W., et al. (1995). Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proceedings of the National Academy of Sciences of the United States of America, 92, 7105–7109. doi:10.1073/pnas.92.15.7105.

    PubMed  CAS  Google Scholar 

  • Browne, S. E., Bowling, A. C., MacGarvey, U., Baik, M. J., Berger, S. C., Muqit, M. M., et al. (1997). Oxidative damage and metabolic dysfunction in Huntington’s disease: Selective vulnerability of the basal ganglia. Annals of Neurology, 41, 646–653. doi:10.1002/ana.410410514.

    PubMed  CAS  Google Scholar 

  • Browne, S. E., Ferrante, R. J., & Beal, M. F. (1999). Oxidative stress in Huntington’s disease. Brain Pathology, 9, 147–163.

    PubMed  CAS  Google Scholar 

  • Burklen, T. S., Schlattner, U., Homayouni, R., Gough, K., Rak, M., Szeghalmi, A., et al. (2006). The Creatine Kinase/Creatine Connection to Alzheimer’s Disease: CK-Inactivation, APP-CK Complexes and Focal Creatine Deposits. Journal of Biomedicine and Biotechnology, 2006, 35936. doi:10.1155/JBB/2006/35936.

    PubMed  Google Scholar 

  • Butterfield, D. A., & Lauderback, C. M. (2002). Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radical Biology and Medicine, 32, 1050–1060. doi:10.1016/S0891-5849(02)00794-3.

    PubMed  CAS  Google Scholar 

  • Candlish, E., La, C. J., & Unrau, A. M. (1969). The biosynthesis of 3-nitropropionic acid in creeping indigo (Indigofera spicata). Biochemistry, 8, 182–186. doi:10.1021/bi00829a026.

    PubMed  CAS  Google Scholar 

  • Carri, M. T., Ferri, A., Battistoni, A., Famhy, L., Gabbianelli, R., Poccia, F., et al. (1997). Expression of a Cu, Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondrial alteration and increase of cytosolic Ca2+ concentration in transfected neuroblastoma SH-SY5Y cells. FEBS Letters, 414, 365–368. doi:10.1016/S0014-5793(97)01051-X.

    PubMed  CAS  Google Scholar 

  • Castegna, A., Aksenov, M., Thongboonkerd, V., Klein, J. B., Pierce, W. M., Booze, R., et al. (2002a). Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: Dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. Journal of Neurochemistry, 82, 1524–1532. doi:10.1046/j.1471-4159.2002.01103.x.

    PubMed  CAS  Google Scholar 

  • Castegna, A., Aksenov, M., Aksenova, M., Thongboonkerd, V., Klein, J. B., Pierce, W. M., et al. (2002b). Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: Creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radical Biology and Medicine, 33, 562–571. doi:10.1016/S0891-5849(02)00914-0.

    PubMed  CAS  Google Scholar 

  • Ceddia, R. B., & Sweeney, G. (2004). Creatine supplementation increases glucose oxidation and AMPK phosphorylation and reduces lactate production in L6 rat skeletal muscle cells. Journal of Physiology, 555, 409–421.

    PubMed  CAS  Google Scholar 

  • Csukly, K., Ascah, A., Matas, J., Gardiner, P. F., Fontaine, E., & Burelle, Y. (2006). Muscle denervation promotes opening of the permeability transition pore and increases the expression of cyclophilin D. Journal of Physiology, 574, 319–327. doi:10.1113/jphysiol.2006.109702.

    PubMed  CAS  Google Scholar 

  • Cui, L., Jeong, H., Borovecki, F., Parkhurst, C. N., Tanese, N., & Krainc, D. (2006). Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 127, 59–69. doi:10.1016/j.cell.2006.09.015.

    PubMed  CAS  Google Scholar 

  • David, S., Shoemaker, M., & Haley, B. E. (1998). Abnormal properties of creatine kinase in Alzheimer’s disease brain: Correlation of reduced enzyme activity and active site photolabeling with aberrant cytosol-membrane partitioning. Brain Research. Molecular Brain Research, 54, 276–287. doi:10.1016/S0169-328X(97)00343-4.

    PubMed  CAS  Google Scholar 

  • de la Monte, S. M., Luong, T., Neely, T. R., Robinson, D., & Wands, J. R. (2000). Mitochondrial DNA damage as a mechanism of cell loss in Alzheimer’s disease. Laboratory Investigation, 80, 1323–1335. doi:10.1038/labinvest.3780140.

    PubMed  Google Scholar 

  • Dedeoglu, A., Kubilus, J. K., Yang, L., Ferrante, K. L., Hersch, S. M., Beal, M. F., et al. (2003). Creatine therapy provides neuroprotection after onset of clinical symptoms in Huntington’s disease transgenic mice. Journal of Neurochemistry, 85, 1359–1367. doi:10.1046/j.1471-4159.2003.01706.x.

    PubMed  CAS  Google Scholar 

  • Di Lisa, F., & Bernardi, P. (2006). Mitochondria and ischemia-reperfusion injury of the heart: Fixing a hole. Cardiovascular Research, 70, 191–199. doi:10.1016/j.cardiores.2006.01.016.

    PubMed  Google Scholar 

  • Dolder, M., Walzel, O., Speer, U., Schlattner, T., & Wallimann, T. (2003). Inhibition of the mitochondrial transition by creatine kinase substrates. Requirement for microcompartmentation. Journal of Biological Chemistry, 278, 17760–17766. doi:10.1074/jbc.M208705200.

    PubMed  CAS  Google Scholar 

  • Eppenberger, H. M., Dawson, D. M., & Kaplan, N. O. (1967). The comparative enzymology of creatine kinases. I. Isolation and characterization from chicken and rabbit tissues. Journal of Biological Chemistry, 242, 204–209.

    PubMed  CAS  Google Scholar 

  • Ferrante, R. J., Andreassen, O. A., Jenkins, B. G., Dedeoglu, A., Kuemmerle, S., Kubilus, J. K., et al. (2000). Neuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease. Journal of Neuroscience, 20, 4389–4397.

    PubMed  CAS  Google Scholar 

  • Gallant, M., Rak, M., Szeghalmi, A., Del Bigio, M. R., Westaway, D., Yang, J., et al. (2006). Focally elevated creatine detected in amyloid precursor protein (APP) transgenic mice and Alzheimer disease brain tissue. Journal of Biological Chemistry, 281, 5–8. doi:10.1074/jbc.C500244200.

    PubMed  CAS  Google Scholar 

  • Green, D. R., & Reed, J. C. (1998). Mitochondria and apoptosis. Science, 281, 1309–1312. doi:10.1126/science.281.5381.1309.

    PubMed  CAS  Google Scholar 

  • Groeneveld, G. J., Van Kan, H. J., Kalmijn, S., Veldink, J. H., Guchelaar, H. J., Wokke, J. H., et al. (2003). Riluzole serum concentrations in patients with ALS: Associations with side effects and symptoms. Neurology, 61, 1141–1143.

    PubMed  CAS  Google Scholar 

  • Grunewald, T., & Beal, M. F. (1999). Bioenergetics in Huntington’s disease. Annals of the New York Academy of Sciences, 893, 203–213. doi:10.1111/j.1749-6632.1999.tb07827.x.

    PubMed  CAS  Google Scholar 

  • Gu, M., Gash, M. T., Mann, V. M., Javoy-Agid, F., Cooper, J. M., & Schapira, A. H. (1996). Mitochondrial defect in Huntington’s disease caudate nucleus. Annals of Neurology, 39, 385–389. doi:10.1002/ana.410390317.

    PubMed  CAS  Google Scholar 

  • Gurney, M. E., Pu, H., Chiu, A. Y., Dal Canto, M. C., Polchow, C. Y., Alexander, D. D., et al. (1994). Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science, 264, 1772–1775. doi:10.1126/science.8209258.

    PubMed  CAS  Google Scholar 

  • Henshaw, R., Jenkins, B. G., Schulz, J. B., Ferrante, R. J., Kowall, N. W., Rosen, B. R., et al. (1994). Malonate produces striatal lesions by indirect NMDA receptor activation. Brain Research, 647, 161–166. doi:10.1016/0006-8993(94)91412-5.

    PubMed  CAS  Google Scholar 

  • Hensley, K., Butterfield, D. A., Mattson, M., Aksenova, M., Harris, M., Wu, J. F., et al. (1995). A model for beta-amyloid aggregation and neurotoxicity based on the free radical generating capacity of the peptide: Implications of “molecular shrapnel” for Alzheimer’s disease. Proceedings of the Western Pharmacology Society, 38, 113–120.

    PubMed  CAS  Google Scholar 

  • Hersch, S. M., Gevorkian, S., Marder, K., Moskowitz, C., Feigin, A., Cox, M., et al. (2006). Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2’dG. Neurology, 66, 250–252. doi:10.1212/01.wnl.0000194318.74946.b6.

    PubMed  CAS  Google Scholar 

  • Hervias, I., Beal, M. F., & Manfredi, G. (2006). Mitochondrial dysfunction and amyotrophic lateral sclerosis. Muscle and Nerve, 33, 598–608. doi:10.1002/mus.20489.

    PubMed  CAS  Google Scholar 

  • Hoyer, S. (2004). Causes and consequences of disturbances of cerebral glucose metabolism in sporadic Alzheimer disease: Therapeutic implications. Advances in Experimental Medicine and Biology, 541, 135–152.

    PubMed  CAS  Google Scholar 

  • Jacobus, W. E., & Lehninger, A. L. (1973). Creatine kinase of rat heart mitochondria. Coupling of creatine phosphorylation to electron transport. Journal of Biological Chemistry, 248, 4803–4810.

    PubMed  CAS  Google Scholar 

  • Jenkins, B. G., Koroshetz, W. J., Beal, M. F., & Rosen, B. R. (1993). Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology, 43, 2689–2695.

    PubMed  CAS  Google Scholar 

  • Jost, C. R., Van Der Zee, C. E., In ‘t Zandt, H. J., Oerlemans, F., Verheij, M., Streijger, F., et al. (2002). Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility. European Journal of Neuroscience, 15, 1692–1706.

    PubMed  Google Scholar 

  • Juhn, M. S., & Tarnopolsky, M. (1998a). Oral creatine supplementation and athletic performance: A critical review. Clinical Journal of Sport Medicine, 8, 286–297.

    PubMed  CAS  Google Scholar 

  • Juhn, M. S., & Tarnopolsky, M. (1998b). Potential side effects of oral creatine supplementation: A critical review. Clinical Journal of Sport Medicine, 8, 298–304.

    Article  PubMed  CAS  Google Scholar 

  • Klivenyi, P., Ferrante, R. J., Matthews, R. T., Bogdanov, M. B., Klein, A. M., Andreassen, O. A., et al. (1999). Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nature Medicine, 5, 347–350. doi:10.1038/6568.

    PubMed  CAS  Google Scholar 

  • Kokoszka, J. E., Waymire, K. G., Levy, S. E., Sligh, J. E., Cai, J., Jones, D. P., et al. (2004). The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature, 427, 461–465. doi:10.1038/nature02229.

    PubMed  CAS  Google Scholar 

  • Koroshetz, W. J., Jenkins, B. G., Rosen, B. R., & Beal, M. F. (1997). Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Annals of Neurology, 41, 160–165. doi:10.1002/ana.410410206.

    PubMed  CAS  Google Scholar 

  • Krige, D., Carroll, M. T., Cooper, J. M., Marsden, C. D., & Schapira, A. H. (1992). Platelet mitochondrial function in Parkinson’s disease. The Royal Kings and Queens Parkinson Disease Research Group. Annals of Neurology, 32, 782–788. doi:10.1002/ana.410320612.

    PubMed  CAS  Google Scholar 

  • Li, X., Burklen, T., Yuan, X., Schlattner, U., Desiderio, D. M., Wallimann, T., et al. (2006). Stabilization of ubiquitous mitochondrial creatine kinase preprotein by APP family proteins. Molecular and Cellular Neurosciences, 31, 263–272. doi:10.1016/j.mcn.2005.09.015.

    PubMed  CAS  Google Scholar 

  • Ludolph, A. C., He, F., Spencer, P. S., Hammerstad, J., & Sabri, M. (1991). 3-Nitropropionic acid-exogenous animal neurotoxin and possible human striatal toxin. Canadian Journal of Neurological Sciences, 18, 492–498.

    PubMed  CAS  Google Scholar 

  • Ludolph, A. C., Seelig, M., Ludolph, A. G., Sabri, M. I., & Spencer, P. S. (1992). ATP deficits and neuronal degeneration induced by 3-nitropropionic acid. Annals of the New York Academy of Sciences, 648, 300–302. doi:10.1111/j.1749-6632.1992.tb24562.x.

    PubMed  CAS  Google Scholar 

  • Mahoney, D. J., Parise, G., & Tarnopolsky, M. A. (2002). Nutritional and exercise-based therapies in the treatment of mitochondrial disease. Current Opinion in Clinical Nutrition and Metabolic Care, 5, 619–629. doi:10.1097/00075197-200211000-00004.

    PubMed  CAS  Google Scholar 

  • Markesbery, W. R. (1997). Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biology and Medicine, 23, 134–147. doi:10.1016/S0891-5849(96)00629-6.

    PubMed  CAS  Google Scholar 

  • Matthews, R. T., Yang, L., Jenkins, B. G., Ferrante, R. J., Rosen, B. R., Kaddurah-Daouk, R., et al. (1998). Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington’s disease. Journal of Neuroscience, 18, 156–163.

    PubMed  CAS  Google Scholar 

  • Matthews, R. T., Ferrante, R. J., Klivenyi, P., Yang, L., Klein, A. M., Mueller, G., et al. (1999). Creatine and cyclocreatine attenuate MPTP neurotoxicity. Experimental Neurology, 157, 142–149. doi:10.1006/exnr.1999.7049.

    PubMed  CAS  Google Scholar 

  • Maurer, I., Zierz, S., & Moller, H. J. (2000). A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiology of Aging, 21, 455–462. doi:10.1016/S0197-4580(00)00112-3.

    PubMed  CAS  Google Scholar 

  • Mihic, S., MacDonald, J. R., McKenzie, S., & Tarnopolsky, M. A. (2000). Acute creatine loading increases fat-free mass, but does not affect blood pressure, plasma creatinine, or CK activity in men and women. Medicine and Science in Sports and Exercise, 32, 291–296. doi:10.1097/00005768-200002000-00007.

    PubMed  CAS  Google Scholar 

  • NINDS NET-PD Investigators. (2006). A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology, 66, 664–671. doi:10.1212/01.wnl.0000201252.57661.e1.

    Google Scholar 

  • O’Gorman, E., Piendl, T., Muller, M., Brdiczka, D., & Wallimann, T. (1997a). Mitochondrial intermembrane inclusion bodies: The common denominator between human mitochondrial myopathies and creatine depletion, due to impairment of cellular energetics. Molecular and Cellular Biochemistry, 174, 283–289. doi:10.1023/A:1006881113149.

    PubMed  CAS  Google Scholar 

  • O’Gorman, E., Beutner, G., Dolder, M., Koretsky, A. P., Brdiczka, D., & Wallimann, T. (1997b). The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Letters, 414, 253–257. doi:10.1016/S0014-5793(97)01045-4.

    PubMed  CAS  Google Scholar 

  • Onyango, I. G., & Khan, S. M. (2006). Oxidative stress, mitochondrial dysfunction, and stress signaling in Alzheimer’s disease. Current Alzheimer Research, 3, 339–349. doi:10.2174/156720506778249489.

    PubMed  CAS  Google Scholar 

  • Palfi, S., Ferrante, R. J., Brouillet, E., Beal, M. F., Dolan, R., Guyot, M. C., et al. (1996). Chronic 3-nitropropionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington’s disease. Journal of Neuroscience, 16, 3019–3025.

    PubMed  CAS  Google Scholar 

  • Parker, W. D., Jr, Boyson, S. J., & Parks, J. K. (1989). Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Annals of Neurology, 26, 719–723. doi:10.1002/ana.410260606.

    PubMed  Google Scholar 

  • Parker, W. D., Jr. (1991). Cytochrome oxidase deficiency in Alzheimer’s disease. Annals of the New York Academy of Sciences, 640, 59–64.

    PubMed  Google Scholar 

  • Peng, T. I., & Greenamyre, J. T. (1998). Privileged access to mitochondria of calcium influx through N-methyl-d-aspartate receptors. Molecular Pharmacology, 53, 974–980.

    PubMed  CAS  Google Scholar 

  • Persky, A. M., & Brazeau, G. A. (2001). Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacological Reviews, 53, 161–176.

    PubMed  CAS  Google Scholar 

  • Pettegrew, J. W., Panchalingam, K., Klunk, W. E., McClure, R. J., & Muenz, L. R. (1994). Alterations of cerebral metabolism in probable Alzheimer’s disease: A preliminary study. Neurobiology of Aging, 15, 117–132. doi:10.1016/0197-4580(94)90152-X.

    PubMed  CAS  Google Scholar 

  • Phukan, J., Pender, N. P., & Hardiman, O. (2007). Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurology, 6, 994–1003. doi:10.1016/S1474-4422(07)70265-X.

    PubMed  CAS  Google Scholar 

  • Poortmans, J. R., Auquier, H., Renaut, V., Durussel, A., Saugy, M., & Brisson, G. R. (1997). Effect of short-term creatine supplementation on renal responses in men. European Journal of Applied Physiology and Occupational Physiology, 76, 566–567. doi:10.1007/s004210050291.

    PubMed  CAS  Google Scholar 

  • Poortmans, J. R., & Francaux, M. (2000). Adverse effects of creatine supplementation: Fact or fiction? Sports Medicine, 30, 155–170. doi:10.2165/00007256-200030030-00002.

    PubMed  CAS  Google Scholar 

  • Primeau, A. J., Adhihetty, P. J., & Hood, D. A. (2002). Apoptosis in heart and skeletal muscle. Canadian Journal of Applied Physiology, 27, 349–395.

    PubMed  CAS  Google Scholar 

  • Rae, C., Digney, A. L., McEwan, S. R., & Bates, T. C. (2003). Oral creatine monohydrate supplementation improves brain performance: A double-blind, placebo-controlled, cross-over trial. Proceedings. Biological Sciences, 270, 2147–2150. doi:10.1098/rspb.2003.2492.

    CAS  Google Scholar 

  • Robinson, T. M., Sewell, D. A., Casey, A., Steenge, G., & Greenhaff, P. L. (2000). Dietary creatine supplementation does not affect some haematological indices, or indices of muscle damage and hepatic and renal function. British Journal of Sports Medicine, 34, 284–288. doi:10.1136/bjsm.34.4.284.

    PubMed  CAS  Google Scholar 

  • Ryu, H., & Ferrante, R. J. (2005). Emerging chemotherapeutic strategies for Huntington’s disease. Expert Opinion on Emerging Drugs, 10, 345–363. doi:10.1517/14728214.10.2.345.

    PubMed  CAS  Google Scholar 

  • Saks, V. A., Rosenshtraukh, L. V., Smirnov, V. N., & Chazov, E. I. (1978). Role of creatine phosphokinase in cellular function and metabolism. Canadian Journal of Physiology and Pharmacology, 56, 691–706.

    PubMed  CAS  Google Scholar 

  • Schapira, A. H., Cooper, J. M., Dexter, D., Clark, J. B., Jenner, P., & Marsden, C. D. (1990). Mitochondrial complex I deficiency in Parkinson’s disease. Journal of Neurochemistry, 54, 823–827. doi:10.1111/j.1471-4159.1990.tb02325.x.

    PubMed  CAS  Google Scholar 

  • Schlattner, U., Tokarska-Schlattner, M., & Wallimann, T. (2006). Mitochondrial creatine kinase in human health and disease. Biochimica et Biophysica Acta, 1762, 164–180.

    PubMed  CAS  Google Scholar 

  • Schulz, J. B., & Beal, M. F. (1995). Neuroprotective effects of free radical scavengers and energy repletion in animal models of neurodegenerative disease. Annals of the New York Academy of Sciences, 765, 100–110. doi:10.1111/j.1749-6632.1995.tb16565.x.

    PubMed  CAS  Google Scholar 

  • Selkoe, D. J. (1999). Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature, 399, A23–A31. doi:10.1038/19866.

    PubMed  CAS  Google Scholar 

  • Shefner, J. M., Cudkowicz, M. E., Schoenfeld, D., Conrad, T., Taft, J., Chilton, M., et al. (2004). A clinical trial of creatine in ALS. Neurology, 63, 1656–1661.

    PubMed  CAS  Google Scholar 

  • Simon, D. K., & Johns, D. R. (1999). Mitochondrial disorders: Clinical and genetic features. Annual Review of Medicine, 50, 111–127. doi:10.1146/annurev.med.50.1.111.

    PubMed  CAS  Google Scholar 

  • Small, D. H., & McLean, C. A. (1999). Alzheimer’s disease and the amyloid beta protein: What is the role of amyloid? Journal of Neurochemistry, 73, 443–449. doi:10.1046/j.1471-4159.1999.0730443.x.

    PubMed  CAS  Google Scholar 

  • Smith, C. D., Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Stadtman, E. R., Floyd, R. A., et al. (1991). Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 88, 10540–10543. doi:10.1073/pnas.88.23.10540.

    PubMed  CAS  Google Scholar 

  • Sora, I., Richman, J., Santoro, G., Wei, H., Wang, Y., Vanderah, T., et al. (1994). The cloning and expression of a human creatine transporter. Biochemical and Biophysical Research Communications, 204, 419–427. doi:10.1006/bbrc.1994.2475.

    PubMed  CAS  Google Scholar 

  • Steeghs, K., Benders, A., Oerlemans, F., de, H. A., Heerschap, A., Ruitenbeek, W., et al. (1997). Altered Ca2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell, 89, 93–103. doi:10.1016/S0092-8674(00)80186-5.

    PubMed  CAS  Google Scholar 

  • Steenge, G. R., Lambourne, J., Casey, A., Macdonald, I. A., & Greenhaff, P. L. (1998). Stimulatory effect of insulin on creatine accumulation in human skeletal muscle. American Journal of Physiology, 275, E974–E979.

    PubMed  CAS  Google Scholar 

  • Stockler, S., Marescau, B., De Deyn, P. P., Trijbels, J. M., & Hanefeld, F. (1997). Guanidino compounds in guanidinoacetate methyltransferase deficiency, a new inborn error of creatine synthesis. Metabolism, 46, 1189–1193. doi:10.1016/S0026-0495(97)90215-8.

    PubMed  CAS  Google Scholar 

  • Stockler, S., & Hanefeld, F. (1997). Guanidinoacetate methyltransferase deficiency: A newly recognized inborn error of creatine biosynthesis. Wiener Klinische Wochenschrift, 109, 86–88.

    PubMed  CAS  Google Scholar 

  • Streijger, F., Oerlemans, F., Ellenbroek, B. A., Jost, C. R., Wieringa, B., & Van Der Zee, C. E. (2005). Structural and behavioural consequences of double deficiency for creatine kinases BCK and UbCKmit. Behavioural Brain Research, 157, 219–234. doi:10.1016/j.bbr.2004.07.002.

    PubMed  CAS  Google Scholar 

  • Tarnopolsky, M. A., & Beal, M. F. (2001). Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Annals of Neurology, 49, 561–574. doi:10.1002/ana.1028.

    PubMed  CAS  Google Scholar 

  • Tarnopolsky, M. A., & Safdar, A. (2008). The potential benefits of creatine and conjugated linoleic acid as adjuncts to resistance training in older adults. Applied Physiology, Nutrition, and Metabolism, 33, 213–227. doi:10.1139/H07-142.

    PubMed  CAS  Google Scholar 

  • Thomas, B., & Beal, M. F. (2007). Parkinson’s disease. Human Molecular Genetics, 16(Spec no. 2), R183–R194.

    PubMed  CAS  Google Scholar 

  • Valla, J., Berndt, J. D., & Gonzalez-Lima, F. (2001). Energy hypometabolism in posterior cingulate cortex of Alzheimer’s patients: Superficial laminar cytochrome oxidase associated with disease duration. Journal of Neuroscience, 21, 4923–4930.

    PubMed  CAS  Google Scholar 

  • van der Knaap, M. S., Verhoeven, N. M., Maaswinkel-Mooij, P., Pouwels, P. J., Onkenhout, W., Peeters, E. A., et al. (2000). Mental retardation and behavioral problems as presenting signs of a creatine synthesis defect. Annals of Neurology, 47, 540–543. doi:10.1002/1531-8249(200004)47:4<540::AID-ANA23>3.0.CO;2-K.

    PubMed  Google Scholar 

  • Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., & Eppenberger, H. M. (1992). Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochemical Journal, 281(Pt 1), 21–40.

    PubMed  CAS  Google Scholar 

  • Wallimann, T., & Hemmer, W. (1994). Creatine kinase in non-muscle tissues and cells. Molecular and Cellular Biochemistry, 133–134, 193–220. doi:10.1007/BF01267955.

    PubMed  Google Scholar 

  • Watanabe, A., Kato, N., & Kato, T. (2002). Effects of creatine on mental fatigue and cerebral hemoglobin oxygenation. Neuroscience Research, 42, 279–285. doi:10.1016/S0168-0102(02)00007-X.

    PubMed  CAS  Google Scholar 

  • Weydt, P., Pineda, V. V., Torrence, A. E., Libby, R. T., Satterfield, T. F., Lazarowski, E. R., et al. (2006). Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurodegeneration. Cell Metabolism, 4, 349–362. doi:10.1016/j.cmet.2006.10.004.

    PubMed  CAS  Google Scholar 

  • Wong, P. C., Pardo, C. A., Borchelt, D. R., Lee, M. K., Copeland, N. G., Jenkins, N. A., et al. (1995). An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron, 14, 1105–1116. doi:10.1016/0896-6273(95)90259-7.

    PubMed  CAS  Google Scholar 

  • Wyss, M., & Schulze, A. (2002). Health implications of creatine: Can oral creatine supplementation protect against neurological and atherosclerotic disease? Neuroscience, 112, 243–260. doi:10.1016/S0306-4522(02)00088-X.

    PubMed  CAS  Google Scholar 

  • Zong, H., Ren, J. M., Young, L. H., Pypaert, M., Mu, J., Birnbaum, M. J., et al. (2002). AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proceedings of the National Academy of Sciences of the United States of America, 99, 15983–15987. doi:10.1073/pnas.252625599.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The administrative assistance of Greta Strong, the editorial advice provided by Anna-Maria Joseph and the generous contribution of portions of the mitochondrial illustrations provided by Dr. David Hood's laboratory (York University, Toronto, ON, Canada) during the preparation of this manuscript are gratefully acknowledged. This work was supported by the NINDS, NIA, HDSA, and the Department of Defense. The authors have attempted to include all relevant topics/articles but realize that certain interesting aspects may have been excluded due to space constraints and we apologize for the inability to include these areas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Flint Beal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adhihetty, P.J., Beal, M.F. Creatine and Its Potential Therapeutic Value for Targeting Cellular Energy Impairment in Neurodegenerative Diseases. Neuromol Med 10, 275–290 (2008). https://doi.org/10.1007/s12017-008-8053-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-008-8053-y

Keywords

Navigation