Skip to main content

Advertisement

Log in

Oxidative Stress and β-Amyloid Protein in Alzheimer’s Disease

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Oxidative stress has been proposed to be an important factor in the pathogenesis of Alzheimer’s disease (AD) and contributed to β-amyloid (Aβ) generation. Interaction between oxidative stress and neuro-inflammation leads to Aβ generation. AD is associated with an increase in blood–brain barrier (BBB) permeability due to tight junction involvement. Oxidative stress decreases the expression of low-density lipoprotein receptor-related protein 1 and up-regulates receptor for advanced glycation end products in BBB and increases the BBB permeability, which could potentially lead to increased deposition of Aβ within AD brain. Apoptosis takes place in the pathogenesis of AD, and oxidative stress contributes to apoptosis through both extrinsic pathway and intrinsic pathway. Oxidative stress-induced apoptosis may be a potential factor to Aβ generation. Aβ generation requires two sequential cleavages of APP, with the two proteolytic enzymes: β-secretase and γ-secretase. Oxidative damage up-regulates Aβ via inducing activity of β- and γ-secretases. In this review, we will focus on the mechanism and pathway that oxidative stress contributes to Aβ generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Aβ :

β-Amyloid

AD:

Alzheimer’s disease

ADAMS:

Aging, demographics, and memory study

AGEs:

Advanced glycation end products

aMCI:

Amnestic mild cognitive impairment

AP-1:

Ativator protein 1

APP:

Amyloid precursor protein

AS:

Astrocyte

BACE:

Beta-site APP-cleaving enzyme

BBB:

Blood–brain barrier

CNS:

Cerebral nervous system

ECM:

Extracellular matrix

GPx-Se:

Glutathione peroxidase Se-dependent

GSH:

Glulathione

GSK-3β :

Glycogen synthase kinase 3beta

HAG:

Human astroglial

HPA:

Hypothalamus–pituitary–adrenal

IFN:

Interferon

IL:

Interleukin

IRAK:

Interleukin-1 receptor-associated kinase

IRE:

Iron-responsive element

LRP-1:

Low-density lipoprotein receptor-related protein 1

MAPK:

Mitogen-activated protein kinase

MCI:

Mild cognitive impairment

MCP-1:

Monocyte chemotactic protein 1

MG:

Microglia

MMPs:

Matrix metalloproteinases

NMDA:

N-Methyl-d-aspartate

NF-κB:

Nuclear factor-kappa B

NFT:

Neurofibrillary tangles

NGF:

Nervous growth factor

NO:

Nitric oxide

NT-3:

Neurotrofin-3

RAGE:

Receptor for advanced glycation end products

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SP:

Senile plaque

TGF:

Transforming growth factor

TIMP:

Tissue inhibitor of metalloproteinase

TNF-α :

Tumor necrosis factor-alpha

TNFR:

Tumor necrosis factor receptor

TRADD:

TNF-receptor-associated death domain

References

  • Aarli, J. A. (2003). Role of cytokines in neurological disorders. Current Medicinal Chemistry, 10, 1931–1937.

    Article  PubMed  CAS  Google Scholar 

  • Abbott, N. J., Revest, P. A., & Romero, I. A. (1992). Astrocyte-endothelial interaction: Physiology and pathology. Neuropathology and Applied Neurobiology, 18, 424–433.

    Article  PubMed  CAS  Google Scholar 

  • Abbott, N. J., Ronnback, L., & Hansson, E. (2006). Astrocyte-endothelial interactions at the blood–brain barrier. Nature Reviews. Neuroscience, 7, 41–53.

    Article  PubMed  CAS  Google Scholar 

  • Abramov, A. Y., Canevari, L., & Duchen, M. R. (2004). Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. Journal of Neuroscience, 24, 565–575.

    Article  PubMed  CAS  Google Scholar 

  • Adlard, P. A., Cherny, R. A., Finkelstein, D. I., Gautier, E., Robb, E., Cortes, M., et al. (2008). Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta. Neuron, 59, 43–55.

    Article  PubMed  CAS  Google Scholar 

  • Agid, Y. (1995). Aging, disease and nerve cell death. Bulletin de l’Académie Nationale de Médecine, 179, 1193–1203 (discussion 1197–1203).

    Google Scholar 

  • Agostinho, P., Cunha, R. A., & Oliveira, C. (2010). Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Current Pharmaceutical Design, 16, 2766–2778.

    PubMed  CAS  Google Scholar 

  • Ait-Ghezala, G., Mathura, V. S., Laporte, V., Quadros, A., Paris, D., Patel, N., et al. (2005). Genomic regulation after CD40 stimulation in microglia: Relevance to Alzheimer’s disease. Brain Research. Molecular Brain Research, 140, 73–85.

    Article  PubMed  CAS  Google Scholar 

  • Akama, K. T., Albanese, C., Pestell, R. G., & Van Eldik, L. J. (1998). Amyloid beta-peptide stimulates nitric oxide production in astrocytes through an NFkappaB-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 95, 5795–5800.

    Article  PubMed  CAS  Google Scholar 

  • Aksenov, M. Y., Aksenova, M. V., Carney, J. M., & Butterfield, D. A. (1997). Oxidative modification of glutamine synthetase by amyloid beta peptide. Free Radical Research, 27, 267–281.

    Article  PubMed  CAS  Google Scholar 

  • Akterin, S., Cowburn, R. F., Miranda-Vizuete, A., Jimenez, A., Bogdanovic, N., Winblad, B., et al. (2006). Involvement of glutaredoxin-1 and thioredoxin-1 in beta-amyloid toxicity and Alzheimer’s disease. Cell Death and Differentiation, 13, 1454–1465.

    Article  PubMed  CAS  Google Scholar 

  • Alafuzoff, I., Adolfsson, R., Grundke-Iqbal, I., & Winblad, B. (1987). Blood–brain barrier in Alzheimer dementia and in non-demented elderly. An immunocytochemical study. Acta Neuropathologica, 73, 160–166.

    Article  PubMed  CAS  Google Scholar 

  • Alberdi, E., Sanchez-Gomez, M. V., Cavaliere, F., Perez-Samartin, A., Zugaza, J. L., Trullas, R., et al. (2010). Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium, 47, 264–272.

    Article  PubMed  CAS  Google Scholar 

  • Alberghina, L., & Colangelo, A. M. (2006). The modular systems biology approach to investigate the control of apoptosis in Alzheimer’s disease neurodegeneration. BMC Neuroscience, 7(Suppl 1), S2.

  • Alexiou, P., Chatzopoulou, M., Pegklidou, K., & Demopoulos, V. J. (2010). RAGE: A multi-ligand receptor unveiling novel insights in health and disease. Current Medicinal Chemistry, 17, 2232–2252.

    Article  PubMed  CAS  Google Scholar 

  • Aliev, G. (2011). Oxidative stress induced-metabolic imbalance, mitochondrial failure, and cellular hypoperfusion as primary pathogenetic factors for the development of Alzheimer disease which can be used as a alternate and successful drug treatment strategy: Past, present and future. CNS & Neurological Disorders Drug Targets, 10, 147–148.

    CAS  Google Scholar 

  • Allan, S. M., Harrison, D. C., Read, S., Collins, B., Parsons, A. A., Philpott, K., et al. (2001). Selective increases in cytokine expression in the rat brain in response to striatal injection of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate and interleukin-1. Brain Research. Molecular Brain Research, 93, 180–189.

    Article  PubMed  CAS  Google Scholar 

  • Allen, C. L., & Bayraktutan, U. (2009a). Antioxidants attenuate hyperglycaemia-mediated brain endothelial cell dysfunction and blood–brain barrier hyperpermeability. Diabetes, Obesity & Metabolism, 11, 480–490.

    Article  CAS  Google Scholar 

  • Allen, C. L., & Bayraktutan, U. (2009b). Oxidative stress and its role in the pathogenesis of ischaemic stroke. International Journal of Stroke, 4, 461–470.

    Article  PubMed  CAS  Google Scholar 

  • Aluise, C. D., Robinson, R. A., Beckett, T. L., Murphy, M. P., Cai, J., Pierce, W. M., et al. (2010). Preclinical Alzheimer disease: Brain oxidative stress, Abeta peptide and proteomics. Neurobiology of Diseases, 39, 221–228.

    Article  CAS  Google Scholar 

  • Anderson, I., Adinolfi, C., Doctrow, S., Huffman, K., Joy, K. A., Malfroy, B., et al. (2001). Oxidative signalling and inflammatory pathways in Alzheimer’s disease. Biochemical Society Symposium, 67, 141–149.

    PubMed  CAS  Google Scholar 

  • Ansari, M. A., Joshi, G., Huang, Q., Opii, W. O., Abdul, H. M., Sultana, R., et al. (2006). In vivo administration of D609 leads to protection of subsequently isolated gerbil brain mitochondria subjected to in vitro oxidative stress induced by amyloid beta-peptide and other oxidative stressors: Relevance to Alzheimer’s disease and other oxidative stress-related neurodegenerative disorders. Free Radical Biology and Medicine, 41, 1694–1703.

    Article  PubMed  CAS  Google Scholar 

  • Ansari, M. A., & Scheff, S. W. (2010). Oxidative stress in the progression of Alzheimer disease in the frontal cortex. Journal of Neuropathology and Experimental Neurology, 69, 155–167.

    Article  PubMed  CAS  Google Scholar 

  • Apelt, J., Bigl, M., Wunderlich, P., & Schliebs, R. (2004). Aging-related increase in oxidative stress correlates with developmental pattern of beta-secretase activity and beta-amyloid plaque formation in transgenic Tg2576 mice with Alzheimer-like pathology. International Journal of Developmental Neuroscience, 22, 475–484.

    Article  PubMed  CAS  Google Scholar 

  • Apelt, J., & Schliebs, R. (2001). Beta-amyloid-induced glial expression of both pro- and anti-inflammatory cytokines in cerebral cortex of aged transgenic Tg2576 mice with Alzheimer plaque pathology. Brain Research, 894, 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Armulik, A., Genove, G., Mae, M., Nisancioglu, M. H., Wallgard, E., Niaudet, C., et al. (2010). Pericytes regulate the blood–brain barrier. Nature, 468, 557–561.

    Article  PubMed  CAS  Google Scholar 

  • Aukrust, P., Berge, R. K., Ueland, T., Aaser, E., Damas, J. K., Wikeby, L., et al. (2001). Interaction between chemokines and oxidative stress: Possible pathogenic role in acute coronary syndromes. Journal of the American College of Cardiology, 37, 485–491.

    Article  PubMed  CAS  Google Scholar 

  • Ayasolla, K., Khan, M., Singh, A. K., & Singh, I. (2004). Inflammatory mediator and beta-amyloid (25–35)-induced ceramide generation and iNOS expression are inhibited by vitamin E. Free Radical Biology and Medicine, 37, 325–338.

    Article  PubMed  CAS  Google Scholar 

  • Bachmeier, C., Mullan, M., & Paris, D. (2010). Characterization and use of human brain microvascular endothelial cells to examine beta-amyloid exchange in the blood–brain barrier. Cytotechnology, 62, 519–529.

    Article  PubMed  CAS  Google Scholar 

  • Backstrom, J. R., Lim, G. P., Cullen, M. J., & Tokes, Z. A. (1996). Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-beta peptide (1–40). Journal of Neuroscience, 16, 7910–7919.

    PubMed  CAS  Google Scholar 

  • Bacon, K. B., & Harrison, J. K. (2000). Chemokines and their receptors in neurobiology: Perspectives in physiology and homeostasis. Journal of Neuroimmunology, 104, 92–97.

    Article  PubMed  CAS  Google Scholar 

  • Bader Lange, M. L., Cenini, G., Piroddi, M., Abdul, H. M., Sultana, R., Galli, F., et al. (2008). Loss of phospholipid asymmetry and elevated brain apoptotic protein levels in subjects with amnestic mild cognitive impairment and Alzheimer disease. Neurobiology of Diseases, 29, 456–464.

    Article  CAS  Google Scholar 

  • Bader Lange, M. L., St. Clair, D., Markesbery, W. R., Studzinski, C. M., Murphy, M. P., & Butterfield, D. A. (2010). Age-related loss of phospholipid asymmetry in APP(NLh)/APP(NLh) × PS-1(P264L)/PS-1(P264L) human double mutant knock-in mice: Relevance to Alzheimer disease. Neurobiology of Diseases, 38, 104–115.

    Article  CAS  Google Scholar 

  • Bading, J. R., Yamada, S., Mackic, J. B., Kirkman, L., Miller, C., Calero, M., et al. (2002). Brain clearance of Alzheimer’s amyloid-beta40 in the squirrel monkey: A SPECT study in a primate model of cerebral amyloid angiopathy. Journal of Drug Targeting, 10, 359–368.

    Article  PubMed  CAS  Google Scholar 

  • Bajetto, A., Bonavia, R., Barbero, S., Florio, T., & Schettini, G. (2001). Chemokines and their receptors in the central nervous system. Frontiers in Neuroendocrinology, 22, 147–184.

    Article  PubMed  CAS  Google Scholar 

  • Baker, P. R., Schopfer, F. J., O’Donnell, V. B., & Freeman, B. A. (2009). Convergence of nitric oxide and lipid signaling: Anti-inflammatory nitro-fatty acids. Free Radical Biology and Medicine, 46, 989–1003.

    Article  PubMed  CAS  Google Scholar 

  • Bakshi, P., Margenthaler, E., Laporte, V., Crawford, F., & Mullan, M. (2008). Novel role of CXCR2 in regulation of gamma-secretase activity. ACS Chemical Biology, 3, 777–789.

    Article  PubMed  CAS  Google Scholar 

  • Bakshi, P., Margenthaler, E., Reed, J., Crawford, F., & Mullan, M. (2011). Depletion of CXCR2 inhibits gamma-secretase activity and amyloid-beta production in a murine model of Alzheimer’s disease. Cytokine, 53, 163–169.

    Article  PubMed  CAS  Google Scholar 

  • Baranowska-Bik, A., Bik, W., Wolinska-Witort, E., Martynska, L., Chmielowska, M., Barcikowska, M., et al. (2008). Plasma beta amyloid and cytokine profile in women with Alzheimer’s disease. Neuro Endocrinology Letters, 29, 75–79.

    PubMed  CAS  Google Scholar 

  • Barger, S. W., Smith-Swintosky, V. L., Rydel, R. E., & Mattson, M. P. (1993). Beta-amyloid precursor protein mismetabolism and loss of calcium homeostasis in Alzheimer’s disease. Annals of the New York Academy of Sciences, 695, 158–164.

    Article  PubMed  CAS  Google Scholar 

  • Barten, D. M., & Albright, C. F. (2008). Therapeutic strategies for Alzheimer’s disease. Molecular Neurobiology, 37, 171–186.

    Article  PubMed  CAS  Google Scholar 

  • Baskin, F., Rosenberg, R. N., & Davis, R. M. (1992). Morphological differentiation and proteoglycan synthesis regulate Alzheimer amyloid precursor protein processing in PC-12 and human astrocyte cultures. Journal of Neuroscience Research, 32, 274–279.

    Article  PubMed  CAS  Google Scholar 

  • Basu, A., Castle, V. P., Bouziane, M., Bhalla, K., & Haldar, S. (2006). Crosstalk between extrinsic and intrinsic cell death pathways in pancreatic cancer: Synergistic action of estrogen metabolite and ligands of death receptor family. Cancer Research, 66, 4309–4318.

    Article  PubMed  CAS  Google Scholar 

  • Battaini, F., Pascale, A., Lucchi, L., Pasinetti, G. M., & Govoni, S. (1999). Protein kinase C anchoring deficit in postmortem brains of Alzheimer’s disease patients. Experimental Neurology, 159, 559–564.

    Article  PubMed  CAS  Google Scholar 

  • Bayer, T. A., Schafer, S., Breyhan, H., Wirths, O., Treiber, C., & Multhaup, G. (2006). A vicious circle: Role of oxidative stress, intraneuronal Abeta and Cu in Alzheimer’s disease. Clinical Neuropathology, 25, 163–171.

    PubMed  CAS  Google Scholar 

  • Behl, C., & Moosmann, B. (2002). Oxidative nerve cell death in Alzheimer’s disease and stroke: Antioxidants as neuroprotective compounds. Biological Chemistry, 383, 521–536.

    Article  PubMed  CAS  Google Scholar 

  • Bell, R. D., & Zlokovic, B. V. (2009). Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathologica, 118, 103–113.

    Article  PubMed  CAS  Google Scholar 

  • Bergamini, C. M., Gambetti, S., Dondi, A., & Cervellati, C. (2004). Oxygen, reactive oxygen species and tissue damage. Current Pharmaceutical Design, 10, 1611–1626.

    Article  PubMed  CAS  Google Scholar 

  • Bernhard, D., & Wang, X. L. (2007). Smoking, oxidative stress and cardiovascular diseases—do anti-oxidative therapies fail? Current Medicinal Chemistry, 14, 1703–1712.

    Article  PubMed  CAS  Google Scholar 

  • Bezprozvanny, I., & Mattson, M. P. (2008). Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends in Neurosciences, 31, 454–463.

    Article  PubMed  CAS  Google Scholar 

  • Blasig, I. E., Mertsch, K., & Haseloff, R. F. (2002). Nitronyl nitroxides, a novel group of protective agents against oxidative stress in endothelial cells forming the blood–brain barrier. Neuropharmacology, 43, 1006–1014.

    Article  PubMed  CAS  Google Scholar 

  • Blass, J. P., & Gibson, G. E. (1991). The role of oxidative abnormalities in the pathophysiology of Alzheimer’s disease. Revue Neurologique (Paris), 147, 513–525.

    CAS  Google Scholar 

  • Blume, A. J., & Vitek, M. P. (1989). Focusing on IL-1-promotion of beta-amyloid precursor protein synthesis as an early event in Alzheimer’s disease. Neurobiology of Aging, 10, 406–408 (discussion 404–412).

    Google Scholar 

  • Bonda, D. J., Wang, X., Perry, G., Nunomura, A., Tabaton, M., Zhu, X., et al. (2010). Oxidative stress in Alzheimer disease: A possibility for prevention. Neuropharmacology, 59, 290–294.

    Article  PubMed  CAS  Google Scholar 

  • Bonifati, D. M., & Kishore, U. (2007). Role of complement in neurodegeneration and neuroinflammation. Molecular Immunology, 44, 999–1010.

    Article  PubMed  CAS  Google Scholar 

  • Bosco, D., Fava, A., Plastino, M., Montalcini, T., & A. Pujia. (2011). Possible implications of insulin resistance and glucose metabolism in Alzheimer’s disease pathogenesis. Journal of Cellular and Molecular Medicine.

  • Bossu, P., Ciaramella, A., Moro, M. L., Bellincampi, L., Bernardini, S., Federici, G., et al. (2007). Interleukin 18 gene polymorphisms predict risk and outcome of Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 78, 807–811.

    Article  Google Scholar 

  • Boulanger, E., Wautier, J. L., Dequiedt, P., & Schmidt, A. M. (2006). Glycation, glycoxidation and diabetes mellitus. Néphrologie & Thérapeutique, 2(Suppl 1), S8–S16.

    Google Scholar 

  • Bourne, K. Z., Ferrari, D. C., Lange-Dohna, C., Rossner, S., Wood, T. G., & Perez-Polo, J. R. (2007). Differential regulation of BACE1 promoter activity by nuclear factor-kappaB in neurons and glia upon exposure to beta-amyloid peptides. Journal of Neuroscience Research, 85, 1194–1204.

    Article  PubMed  CAS  Google Scholar 

  • Boyd-Kimball, D., Poon, H. F., Lynn, B. C., Cai, J., Pierce, W. M., Jr., Klein, J. B., et al. (2006). Proteomic identification of proteins specifically oxidized in Caenorhabditis elegans expressing human Abeta(1–42): Implications for Alzheimer’s disease. Neurobiology of Aging, 27, 1239–1249.

    Article  PubMed  CAS  Google Scholar 

  • Bradt, B. M., Kolb, W. P., & Cooper, N. R. (1998). Complement-dependent proinflammatory properties of the Alzheimer’s disease beta-peptide. Journal of Experimental Medicine, 188, 431–438.

    Article  PubMed  CAS  Google Scholar 

  • Buchhave, P., Zetterberg, H., Blennow, K., Minthon, L., Janciauskiene, S., & Hansson, O. (2010). Soluble TNF receptors are associated with Abeta metabolism and conversion to dementia in subjects with mild cognitive impairment. Neurobiology of Aging, 31, 1877–1884.

    Article  PubMed  CAS  Google Scholar 

  • Buoso, E., Lanni, C., Schettini, G., Govoni, S., & Racchi, M. (2010). Beta-amyloid precursor protein metabolism: Focus on the functions and degradation of its intracellular domain. Pharmacological Research, 62, 308–317.

    Article  PubMed  CAS  Google Scholar 

  • Bush, A. I. (2002). Metal complexing agents as therapies for Alzheimer’s disease. Neurobiology of Aging, 23, 1031–1038.

    Article  PubMed  CAS  Google Scholar 

  • Butterfield, D. A., & Boyd-Kimball, D. (2004). Amyloid beta-peptide(1–42) contributes to the oxidative stress and neurodegeneration found in Alzheimer disease brain. Brain Pathology, 14, 426–432.

    Article  PubMed  CAS  Google Scholar 

  • Butterfield, D. A., Galvan, V., Lange, M. B., Tang, H., Sowell, R. A., Spilman, P., et al. (2010a). In vivo oxidative stress in brain of Alzheimer disease transgenic mice: Requirement for methionine 35 in amyloid beta-peptide of APP. Free Radical Biology and Medicine, 48, 136–144.

    Article  PubMed  CAS  Google Scholar 

  • Butterfield, D. A., Griffin, S., Munch, G., & Pasinetti, G. M. (2002). Amyloid beta-peptide and amyloid pathology are central to the oxidative stress and inflammatory cascades under which Alzheimer’s disease brain exists. Journal of Alzheimer’s Disease, 4, 193–201.

    PubMed  CAS  Google Scholar 

  • Butterfield, D. A., Hardas, S. S., & Lange, M. L. (2010b). Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer’s disease: Many pathways to neurodegeneration. Journal of Alzheimer’s Disease, 20, 369–393.

    PubMed  CAS  Google Scholar 

  • Butterfield, D. A., & Lauderback, C. M. (2002). Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radical Biology and Medicine, 32, 1050–1060.

    Article  PubMed  CAS  Google Scholar 

  • Butterfield, D. A., & Pocernich, C. B. (2003). The glutamatergic system and Alzheimer’s disease: Therapeutic implications. CNS Drugs, 17, 641–652.

    Article  PubMed  CAS  Google Scholar 

  • Butterfield, D. A., Reed, T., Newman, S. F., & Sultana, R. (2007). Roles of amyloid beta-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radical Biology and Medicine, 43, 658–677.

    Article  PubMed  CAS  Google Scholar 

  • Cabello-Verrugio, C., & Brandan, E. (2007). A novel modulatory mechanism of transforming growth factor-beta signaling through decorin and LRP-1. The Journal of Biological Chemistry, 282, 18842–18850.

    Article  PubMed  CAS  Google Scholar 

  • Calingasan, N. Y., Baker, H., Sheu, K. F., & Gibson, G. E. (1995). Blood–brain barrier abnormalities in vulnerable brain regions during thiamine deficiency. Experimental Neurology, 134, 64–72.

    Article  PubMed  CAS  Google Scholar 

  • Camins, A., Pallas, M., & Silvestre, J. S. (2008). Apoptotic mechanisms involved in neurodegenerative diseases: Experimental and therapeutic approaches. Methods and Findings in Experimental and Clinical Pharmacology, 30, 43–65.

    Article  PubMed  CAS  Google Scholar 

  • Campos, S. P., Wang, Y., Koj, A., & Baumann, H. (1993). Divergent transforming growth factor-beta effects on IL-6 regulation of acute phase plasma proteins in rat hepatoma cells. Journal of Immunology, 151, 7128–7137.

    CAS  Google Scholar 

  • Candelario-Jalil, E., Thompson, J., Taheri, S., Grossetete, M., Adair, J. C., Edmonds, E., et al. (2011). Matrix metalloproteinases are associated with increased blood–brain barrier opening in vascular cognitive impairment. Stroke, 42, 1345–1350.

    Article  PubMed  CAS  Google Scholar 

  • Candore, G., Bulati, M., Caruso, C., Castiglia, L., Colonna-Romano, G., Di Bona, D., et al. (2010). Inflammation, cytokines, immune response, apolipoprotein E, cholesterol, and oxidative stress in Alzheimer disease: Therapeutic implications. Rejuvenation Research, 13, 301–313.

    Article  PubMed  CAS  Google Scholar 

  • Carrano, A., Hoozemans, J. J., van der Vies, S. M., Rozemuller, A. J., van Horssen, J., & H. E. de Vries. (2011). Amyloid beta induces oxidative stress-mediated blood–brain barrier changes in capillary amyloid angiopathy. Antioxidants & Redox Signaling, 15, 1167–1178.

    Article  CAS  Google Scholar 

  • Carta, M. G., Serra, P., Ghiani, A., Manca, E., Hardoy, M. C., Del Giacco, G. S., et al. (2002). Chemokines and pro-inflammatory cytokines in Down’s syndrome: An early marker for Alzheimer-type dementia? Psychotherapy and Psychosomatics, 71, 233–236.

    Article  PubMed  Google Scholar 

  • Cechetto, D. F. (2001). Role of nuclear factor kappa B in neuropathological mechanisms. Progress in Brain Research, 132, 391–404.

    Article  PubMed  CAS  Google Scholar 

  • Cenini, G., Sultana, R., Memo, M., & Butterfield, D. A. (2008a). Effects of oxidative and nitrosative stress in brain on p53 proapoptotic protein in amnestic mild cognitive impairment and Alzheimer disease. Free Radical Biology and Medicine, 45, 81–85.

    Article  PubMed  CAS  Google Scholar 

  • Cenini, G., Sultana, R., Memo, M., & Butterfield, D. A. (2008b). Elevated levels of pro-apoptotic p53 and its oxidative modification by the lipid peroxidation product, HNE, in brain from subjects with amnestic mild cognitive impairment and Alzheimer’s disease. Journal of Cellular and Molecular Medicine, 12, 987–994.

    Article  PubMed  CAS  Google Scholar 

  • Chan, A., & Shea, T. B. (2007). Folate deprivation increases presenilin expression, gamma-secretase activity, and Abeta levels in murine brain: potentiation by ApoE deficiency and alleviation by dietary S-adenosyl methionine. Journal of Neurochemistry, 102, 753–760.

    Article  PubMed  CAS  Google Scholar 

  • Chang, S., ran Ma, T., Miranda, R. D., Balestra, M. E., Mahley, R. W., & Huang, Y. (2005). Lipid- and receptor-binding regions of apolipoprotein E4 fragments act in concert to cause mitochondrial dysfunction and neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 102, 18694–18699.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L., Na, R., Gu, M., Richardson, A., & Ran, Q. (2008). Lipid peroxidation up-regulates BACE1 expression in vivo: a possible early event of amyloidogenesis in Alzheimer’s disease. Journal of Neurochemistry, 107, 197–207.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., Walker, D. G., Schmidt, A. M., Arancio, O., Lue, L. F., & Yan, S. D. (2007). RAGE: A potential target for Abeta-mediated cellular perturbation in Alzheimer’s disease. Current Molecular Medicine, 7, 735–742.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C. H., Zhou, W., Liu, S., Deng, Y., Cai, F., Tone, M., et al. (2011). Increased NF-kappaB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. The International Journal of Neuropsychopharmacology, 18, 1–14.

    Article  CAS  Google Scholar 

  • Cherny, R. A., Legg, J. T., McLean, C. A., Fairlie, D. P., Huang, X., Atwood, C. S., et al. (1999). Aqueous dissolution of Alzheimer’s disease Abeta amyloid deposits by biometal depletion. The Journal of Biological Chemistry, 274, 23223–23228.

    Article  PubMed  CAS  Google Scholar 

  • Choe, W., Stoica, G., Lynn, W., & Wong, P. K. (1998). Neurodegeneration induced by MoMuLV-ts1 and increased expression of Fas and TNF-alpha in the central nervous system. Brain Research, 779, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Chong, Y. H., Shin, S. A., Lee, H. J., Kang, J. H., & Suh, Y. H. (2002). Molecular mechanisms underlying cyclic AMP inhibition of macrophage dependent TNF-alpha production and neurotoxicity in response to amyloidogenic C-terminal fragment of Alzheimer’s amyloid precursor protein. Journal of Neuroimmunology, 133, 160–174.

    Article  PubMed  CAS  Google Scholar 

  • Christen, Y. (2000). Oxidative stress and Alzheimer disease. American Journal of Clinical Nutrition, 71, 621S–629S.

    PubMed  CAS  Google Scholar 

  • Cirrito, J. R., Deane, R., Fagan, A. M., Spinner, M. L., Parsadanian, M., Finn, M. B., et al. (2005). P-glycoprotein deficiency at the blood–brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model. Journal of Clinical Investigation, 115, 3285–3290.

    Article  PubMed  CAS  Google Scholar 

  • Cole, S. L., & Vassar, R. (2008). The role of amyloid precursor protein processing by BACE1, the beta-secretase, in Alzheimer disease pathophysiology. The Journal of Biological Chemistry, 283, 29621–29625.

    Article  PubMed  CAS  Google Scholar 

  • Combarros, O., van Duijn, C. M., Hammond, N., Belbin, O., Arias-Vasquez, A., Cortina-Borja, M., et al. (2009). Replication by the Epistasis Project of the interaction between the genes for IL-6 and IL-10 in the risk of Alzheimer’s disease. Journal of Neuroinflammation, 6, 22.

    Article  PubMed  CAS  Google Scholar 

  • Combs, C. K., Johnson, D. E., Karlo, J. C., Cannady, S. B., & Landreth, G. E. (2000). Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. Journal of Neuroscience, 20, 558–567.

    PubMed  CAS  Google Scholar 

  • Combs, C. K., Karlo, J. C., Kao, S. C., & Landreth, G. E. (2001). Beta-amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. Journal of Neuroscience, 21, 1179–1188.

    PubMed  CAS  Google Scholar 

  • Conway, E. L., Gundlach, A. L., & Craven, J. A. (1998). Temporal changes in glial fibrillary acidic protein messenger RNA and [3H]PK11195 binding in relation to imidazoline-I2-receptor and alpha 2-adrenoceptor binding in the hippocampus following transient global forebrain ischaemia in the rat. Neuroscience, 82, 805–817.

    Article  PubMed  CAS  Google Scholar 

  • Cotman, C. W. (1998). Apoptosis decision cascades and neuronal degeneration in Alzheimer’s disease. Neurobiology of Aging, 19, S29–S32.

    Article  PubMed  CAS  Google Scholar 

  • Cruz-Sanchez, F. F., Girones, X., Ortega, A., Alameda, F., & Lafuente, J. V. (2010). Oxidative stress in Alzheimer’s disease hippocampus: A topographical study. Journal of the Neurological Sciences, 299, 163–167.

    Article  PubMed  CAS  Google Scholar 

  • Cui, J. G., Li, Y. Y., Zhao, Y., Bhattacharjee, S., & Lukiw, W. J. (2010). Differential regulation of interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-kappaB in stressed human astroglial cells and in Alzheimer disease. The Journal of Biological Chemistry, 285, 38951–38960.

    Article  PubMed  CAS  Google Scholar 

  • Cuschieri, J., & Maier, R. V. (2007). Oxidative stress, lipid rafts, and macrophage reprogramming. Antioxidants & Redox Signaling, 9, 1485–1497.

    Article  CAS  Google Scholar 

  • Cuvelier, A., Kuntz, C., Sesboue, R., Muir, J. F., & Martin, J. P. (1997). Metalloproteinases in the extracellular matrix: Structure and activity. Revue des Maladies Respiratoires, 14, 1–10.

    PubMed  CAS  Google Scholar 

  • Dal Pra, I., Chiarini, A., Pacchiana, R., Chakravarthy, B., Whitfield, J. F., & Armato, U. (2008). Emerging concepts of how beta-amyloid proteins and pro-inflammatory cytokines might collaborate to produce an ‘Alzheimer brain’ (review). Molecular Medicine Reports, 1, 173–178.

    PubMed  CAS  Google Scholar 

  • De Felice, F. G., Velasco, P. T., Lambert, M. P., Viola, K., Fernandez, S. J., Ferreira, S. T., et al. (2007). Abeta oligomers induce neuronal oxidative stress through an N-methyl-d-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. The Journal of Biological Chemistry, 282, 11590–11601.

    Article  PubMed  CAS  Google Scholar 

  • de la Monte, S. M., Luong, T., Neely, T. R., Robinson, D., & Wands, J. R. (2000). Mitochondrial DNA damage as a mechanism of cell loss in Alzheimer’s disease. Laboratory Investigation, 80, 1323–1335.

    Article  Google Scholar 

  • de la Torre, J. C., & Mussivand, T. (1993). Can disturbed brain microcirculation cause Alzheimer’s disease? Neurological Research, 15, 146–153.

    Google Scholar 

  • Deane, R., Bell, R. D., Sagare, A., & Zlokovic, B. V. (2009). Clearance of amyloid-beta peptide across the blood–brain barrier: Implication for therapies in Alzheimer’s disease. CNS & Neurological Disorders Drug Targets, 8, 16–30.

    Article  CAS  Google Scholar 

  • Deane, R., Du Yan, S., Submamaryan, R. K., LaRue, B., Jovanovic, S., Hogg, E., et al. (2003). RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain. Nature Medicine, 9, 907–913.

    Article  PubMed  CAS  Google Scholar 

  • Deane, R., Sagare, A., Hamm, K., Parisi, M., Lane, S., Finn, M. B., et al. (2008a). apoE isoform-specific disruption of amyloid beta peptide clearance from mouse brain. Journal of Clinical Investigation, 118, 4002–4013.

    Article  PubMed  CAS  Google Scholar 

  • Deane, R., Sagare, A., & Zlokovic, B. V. (2008b). The role of the cell surface LRP and soluble LRP in blood–brain barrier Abeta clearance in Alzheimer’s disease. Current Pharmaceutical Design, 14, 1601–1605.

    Article  PubMed  CAS  Google Scholar 

  • Deane, R., Wu, Z., & Zlokovic, B. V. (2004). RAGE (yin) versus LRP (yang) balance regulates alzheimer amyloid beta-peptide clearance through transport across the blood–brain barrier. Stroke, 35, 2628–2631.

    Article  PubMed  CAS  Google Scholar 

  • Deigner, H. P., Haberkorn, U., & Kinscherf, R. (2000). Apoptosis modulators in the therapy of neurodegenerative diseases. Expert Opinion on Investigational Drugs, 9, 747–764.

    Article  PubMed  CAS  Google Scholar 

  • Del Bo, R., Angeretti, N., Lucca, E., De Simoni, M. G., & Forloni, G. (1995). Reciprocal control of inflammatory cytokines, IL-1 and IL-6, and beta-amyloid production in cultures. Neuroscience Letters, 188, 70–74.

    Article  PubMed  CAS  Google Scholar 

  • Del Villar, K., & Miller, C. A. (2004). Down-regulation of DENN/MADD, a TNF receptor binding protein, correlates with neuronal cell death in Alzheimer’s disease brain and hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 101, 4210–4215.

    Article  PubMed  CAS  Google Scholar 

  • del Zoppo, G. J., & Milner, R. (2006). Integrin-matrix interactions in the cerebral microvasculature. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1966–1975.

    Article  PubMed  CAS  Google Scholar 

  • Del Zoppo, G. J., Milner, R., Mabuchi, T., Hung, S., Wang, X., & Koziol, J. A. (2006). Vascular matrix adhesion and the blood–brain barrier. Biochemical Society Transactions, 34, 1261–1266.

    Article  PubMed  CAS  Google Scholar 

  • Dickson, D. W., Lee, S. C., Mattiace, L. A., Yen, S. H., & Brosnan, C. (1993). Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia, 7, 75–83.

    Article  PubMed  CAS  Google Scholar 

  • Dinarello, C. A. (2000). Proinflammatory cytokines. Chest, 118, 503–508.

    Article  PubMed  CAS  Google Scholar 

  • Donahue, J. E., Flaherty, S. L., Johanson, C. E., Duncan, J. A., III, Silverberg, G. D., Miller, M. C., et al. (2006). RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathologica, 112, 405–415.

    Article  PubMed  CAS  Google Scholar 

  • Donahue, J. E., & Johanson, C. E. (2008). Apolipoprotein E, amyloid-beta, and blood–brain barrier permeability in Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 67, 261–270.

    Article  PubMed  CAS  Google Scholar 

  • Donnelly, R. J., Friedhoff, A. J., Beer, B., Blume, A. J., & Vitek, M. P. (1990). Interleukin-1 stimulates the beta-amyloid precursor protein promoter. Cellular and Molecular Neurobiology, 10, 485–495.

    Article  PubMed  CAS  Google Scholar 

  • Du, Y., Wooten, M. C., Gearing, M., & Wooten, M. W. (2009). Age-associated oxidative damage to the p62 promoter: Implications for Alzheimer disease. Free Radical Biology and Medicine, 46, 492–501.

    Article  PubMed  CAS  Google Scholar 

  • Dumont, M., & Beal, M. F. (2010). Neuroprotective strategies involving ROS in Alzheimer disease. Free Radical Biology & Medicine, 51, 1014–1026.

    Article  CAS  Google Scholar 

  • Duyckaerts, C., Delatour, B., & Potier, M. C. (2009). Classification and basic pathology of Alzheimer disease. Acta Neuropathologica, 118, 5–36.

    Article  PubMed  CAS  Google Scholar 

  • El Khoury, J. B., Moore, K. J., Means, T. K., Leung, J., Terada, K., Toft, M., et al. (2003). CD36 mediates the innate host response to beta-amyloid. Journal of Experimental Medicine, 197, 1657–1666.

    Article  PubMed  CAS  Google Scholar 

  • Eliceiri, B. P., Gonzalez, A. M., & Baird, A. (2011). Zebrafish model of the blood–brain barrier: Morphological and permeability studies. Methods in Molecular Biology, 686, 371–378.

    Article  PubMed  CAS  Google Scholar 

  • Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicologic Pathology, 35, 495–516.

    Article  PubMed  CAS  Google Scholar 

  • Fang, F., Lue, L. F., Yan, S., Xu, H., Luddy, J. S., Chen, D., et al. (2010). RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease. FASEB J, 24, 1043–1055.

    Article  PubMed  CAS  Google Scholar 

  • Fedorov, V. P., Ushakov, I. B., Kordenko, A. N., Drobyshev, V. I., & Davydov, B. I. (1989). Structuro-functional organization of the blood–brain barrier. Izvestiia Akademii Nauk. Seriia biologicheskaia, Jan–Feb(1), 24–34.

  • Feghali, C. A., & Wright, T. M. (1997). Cytokines in acute and chronic inflammation. Frontiers in Bioscience, 2, d12–d26.

    PubMed  CAS  Google Scholar 

  • Fenoglio, C., Galimberti, D., Lovati, C., Guidi, I., Gatti, A., Fogliarino, S., et al. (2004). MCP-1 in Alzheimer’s disease patients: A-2518G polymorphism and serum levels. Neurobiology of Aging, 25, 1169–1173.

    Article  PubMed  CAS  Google Scholar 

  • Fiala, M., & Veerhuis, R. (2010). Biomarkers of inflammation and amyloid-beta phagocytosis in patients at risk of Alzheimer disease. Experimental Gerontology, 45, 57–63.

    Article  PubMed  CAS  Google Scholar 

  • Filiz, G., Price, K. A., Caragounis, A., Du, T., Crouch, P. J., & White, A. R. (2008). The role of metals in modulating metalloprotease activity in the AD brain. European Biophysics Journal, 37, 315–321.

    Article  PubMed  CAS  Google Scholar 

  • Fillit, H., Ding, W. H., Buee, L., Kalman, J., Altstiel, L., Lawlor, B., et al. (1991). Elevated circulating tumor necrosis factor levels in Alzheimer’s disease. Neuroscience Letters, 129, 318–320.

    Article  PubMed  CAS  Google Scholar 

  • Finder, V. H. (2010). Alzheimer’s disease: A general introduction and pathomechanism. Journal of Alzheimer’s Disease, 22(Suppl 3), 5–19.

    PubMed  Google Scholar 

  • Flex, A., Gaetani, E., Proia, A. S., Pecorini, G., Straface, G., Biscetti, F., et al. (2006). Analysis of functional polymorphisms of metalloproteinase genes in persons with vascular dementia and Alzheimer’s disease. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 61, 1065–1069.

    Google Scholar 

  • Forman, H. J., Fukuto, J. M., & Torres, M. (2004). Redox signaling: Thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. American Journal of Physiology, 287, C246–C256.

    Article  PubMed  CAS  Google Scholar 

  • Frackowiak, J., Zoltowska, A., & Wisniewski, H. M. (1994). Non-fibrillar beta-amyloid protein is associated with smooth muscle cells of vessel walls in Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 53, 637–645.

    Article  PubMed  CAS  Google Scholar 

  • Fujita, S., Seino, K., Sato, K., Sato, Y., Eizumi, K., Yamashita, N., et al. (2006). Regulatory dendritic cells act as regulators of acute lethal systemic inflammatory response. Blood, 107, 3656–3664.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, S., Steele, M., & Munch, G. (2010). Activated astroglia during chronic inflammation in Alzheimer’s disease—do they neglect their neurosupportive roles? Mutation Research, 690, 40–49.

    Article  PubMed  CAS  Google Scholar 

  • Galasko, D., & Montine, T. J. (2010). Biomarkers of oxidative damage and inflammation in Alzheimer’s disease. Biomarkers in Medicine, 4, 27–36.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Matas, S., de Vera, N., Aznar, A. O., Marimon, J. M., Adell, A., Planas, A. M., et al. (2010). In vitro and in vivo activation of astrocytes by amyloid-beta is potentiated by pro-oxidant agents. Journal of Alzheimer’s Disease, 20, 229–245.

    PubMed  CAS  Google Scholar 

  • Garcia-Ospina, G. P., Jimenez-Del Rio, M., Lopera, F., & Velez-Pardo, C. (2003). Neuronal DNA damage correlates with a positive detection of c-Jun, nuclear factor kB, p53 and Par-4 transcription factors in Alzheimer’s disease. Revista de Neurologia, 36, 1004–1010.

    PubMed  CAS  Google Scholar 

  • Garrido, N., Meseguer, M., Simon, C., Pellicer, A., & Remohi, J. (2004). Pro-oxidative and anti-oxidative imbalance in human semen and its relation with male fertility. Asian Journal of Andrology, 6, 59–65.

    PubMed  CAS  Google Scholar 

  • Gasche, Y., Copin, J. C., Sugawara, T., Fujimura, M., & Chan, P. H. (2001). Matrix metalloproteinase inhibition prevents oxidative stress-associated blood–brain barrier disruption after transient focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 21, 1393–1400.

    PubMed  CAS  Google Scholar 

  • Gasic-Milenkovic, J., Loske, C., & Munch, G. (2003). Advanced glycation endproducts cause lipid peroxidation in the human neuronal cell line SH-SY5Y. Journal of Alzheimer’s Disease, 5, 25–30.

    PubMed  CAS  Google Scholar 

  • Ge, Y. W., & Lahiri, D. K. (2002). Regulation of promoter activity of the APP gene by cytokines and growth factors: Implications in Alzheimer’s disease. Annals of the New York Academy of Sciences, 973, 463–467.

    Article  PubMed  CAS  Google Scholar 

  • Gella, A., & Durany, N. (2009). Oxidative stress in Alzheimer disease. Cell Adhesion & Migration, 3, 88–93.

    Article  Google Scholar 

  • Ghiso, J., Tomidokoro, Y., Revesz, T., Frangione, B., & Rostagno, A. (2010). Cerebral amyloid angiopathy and Alzheimer’s disease. Hirosaki Igaku, 61, S111–S124.

    PubMed  CAS  Google Scholar 

  • Ghribi, O., Golovko, M. Y., Larsen, B., Schrag, M., & Murphy, E. J. (2006). Deposition of iron and beta-amyloid plaques is associated with cortical cellular damage in rabbits fed with long-term cholesterol-enriched diets. Journal of Neurochemistry, 99, 438–449.

    Article  PubMed  CAS  Google Scholar 

  • Giardino, I., Edelstein, D., & Brownlee, M. (1996). BCL-2 expression or antioxidants prevent hyperglycemia-induced formation of intracellular advanced glycation endproducts in bovine endothelial cells. Journal of Clinical Investigation, 97, 1422–1428.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, G. E., Park, L. C., Zhang, H., Sorbi, S., & Calingasan, N. Y. (1999). Oxidative stress and a key metabolic enzyme in Alzheimer brains, cultured cells, and an animal model of chronic oxidative deficits. Annals of the New York Academy of Sciences, 893, 79–94.

    Article  PubMed  CAS  Google Scholar 

  • Gilgun-Sherki, Y., Melamed, E., & Offen, D. (2001). Oxidative stress induced-neurodegenerative diseases: The need for antioxidants that penetrate the blood brain barrier. Neuropharmacology, 40, 959–975.

    Article  PubMed  CAS  Google Scholar 

  • Gilgun-Sherki, Y., Melamed, E., & Offen, D. (2003). Antioxidant treatment in Alzheimer’s disease: Current state. Journal of Molecular Neuroscience, 21, 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Glinsky, G. V., & Glinsky, V. V. (1996). Apoptosis and metastasis: A superior resistance of metastatic cancer cells to programmed cell death. Cancer Letters, 101, 43–51.

    Article  PubMed  CAS  Google Scholar 

  • Golde, T. E. (2002). Inflammation takes on Alzheimer disease. Nature Medicine, 8, 936–938.

    Article  PubMed  CAS  Google Scholar 

  • Goldgaber, D., Harris, H. W., Hla, T., Maciag, T., Donnelly, R. J., Jacobsen, J. S., et al. (1989). Interleukin 1 regulates synthesis of amyloid beta-protein precursor mRNA in human endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 86, 7606–7610.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, W. S. (2006). Inflammation and neurodegenerative diseases. American Journal of Clinical Nutrition, 83, 470S–474S.

    PubMed  CAS  Google Scholar 

  • Griffin, B., Selassie, M., & Gwebu, E. T. (2000). Aged garlic extract suppresses lipid peroxidation induced by beta-amyloid in PC12 cells. In Vitro Cellular & Developmental Biology. Animal, 36, 279–280.

    Article  CAS  Google Scholar 

  • Griffin, W. S., Sheng, J. G., Gentleman, S. M., Graham, D. I., Mrak, R. E., & Roberts, G. W. (1994). Microglial interleukin-1 alpha expression in human head injury: Correlations with neuronal and neuritic beta-amyloid precursor protein expression. Neuroscience Letters, 176, 133–136.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, W. S., Sheng, J. G., Roberts, G. W., & Mrak, R. E. (1995). Interleukin-1 expression in different plaque types in Alzheimer’s disease: Significance in plaque evolution. Journal of Neuropathology and Experimental Neurology, 54, 276–281.

    Article  PubMed  CAS  Google Scholar 

  • Grundman, M., & Delaney, P. (2002). Antioxidant strategies for Alzheimer’s disease. Proceedings of the Nutrition Society, 61, 191–202.

    Article  PubMed  CAS  Google Scholar 

  • Gu, Y., Dee, C. M., & Shen, J. (2011a). Interaction of free radicals, matrix metalloproteinases and caveolin-1 impacts blood–brain barrier permeability. Frontiers in Bioscience (Scholar Edition), 3, 1216–1231.

    Article  Google Scholar 

  • Gu, Y., Nieves, J. W., Luchsinger, J. A., & Scarmeas, N. (2011b). Dietary inflammation factor rating system and risk of Alzheimer disease in elders. Alzheimer Disease and Associated Disorders, 25, 149–154.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Q., Fu, W., Sopher, B. L., Miller, M. W., Ware, C. B., Martin, G. M., et al. (1999). Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nature Medicine, 5, 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, M. K., Neelakantan, T. V., Sanghamitra, M., Tyagi, R. K., Dinda, A., Maulik, S., et al. (2006). An assessment of the role of reactive oxygen species and redox signaling in norepinephrine-induced apoptosis and hypertrophy of H9c2 cardiac myoblasts. Antioxidants & Redox Signaling, 8, 1081–1093.

    Article  CAS  Google Scholar 

  • Gutierrez, J., Ballinger, S. W., Darley-Usmar, V. M., & Landar, A. (2006). Free radicals, mitochondria, and oxidized lipids: The emerging role in signal transduction in vascular cells. Circulation Research, 99, 924–932.

    Article  PubMed  CAS  Google Scholar 

  • Haddad, J. J. (2002). Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cellular Signalling, 14, 879–897.

    Article  PubMed  CAS  Google Scholar 

  • Haddad, J. J. (2003). Science review: Redox and oxygen-sensitive transcription factors in the regulation of oxidant-mediated lung injury: Role for hypoxia-inducible factor-1alpha. Critical Care, 7, 47–54.

    Article  PubMed  Google Scholar 

  • Haorah, J., Ramirez, S. H., Schall, K., Smith, D., Pandya, R., & Persidsky, Y. (2007). Oxidative stress activates protein tyrosine kinase and matrix metalloproteinases leading to blood–brain barrier dysfunction. Journal of Neurochemistry, 101, 566–576.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins, B. T., Lundeen, T. F., Norwood, K. M., Brooks, H. L., & Egleton, R. D. (2007). Increased blood–brain barrier permeability and altered tight junctions in experimental diabetes in the rat: Contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia, 50, 202–211.

    Article  PubMed  CAS  Google Scholar 

  • Heimlich, G., & Cidlowski, J. A. (2006). Selective role of intracellular chloride in the regulation of the intrinsic but not extrinsic pathway of apoptosis in Jurkat T-cells. The Journal of Biological Chemistry, 281, 2232–2241.

    Article  PubMed  CAS  Google Scholar 

  • Helzner, E. P., Scarmeas, N., Cosentino, S., Tang, M. X., Schupf, N., & Stern, Y. (2008). Survival in Alzheimer disease: A multiethnic, population-based study of incident cases. Neurology, 71, 1489–1495.

    Article  PubMed  CAS  Google Scholar 

  • Heneka, M. T., & O’Banion, M. K. (2007). Inflammatory processes in Alzheimer’s disease. Journal of Neuroimmunology, 184, 69–91.

    Article  PubMed  CAS  Google Scholar 

  • Heneka, M. T., O’Banion, M. K., Terwel, D., & Kummer, M. P. (2010). Neuroinflammatory processes in Alzheimer’s disease. Journal of Neural Transmission, 117, 919–947.

    Article  PubMed  CAS  Google Scholar 

  • Hensley, K., Mhatre, M., Mou, S., Pye, Q. N., Stewart, C., West, M., et al. (2006). On the relation of oxidative stress to neuroinflammation: Lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Antioxidants & Redox Signaling, 8, 2075–2087.

    Article  CAS  Google Scholar 

  • Heo, H. J., Cho, H. Y., Hong, B., Kim, H. K., Kim, E. K., Kim, B. G., et al. (2001). Protective effect of 4′,5-dihydroxy-3′,6,7-trimethoxyflavone from Artemisia asiatica against Abeta-induced oxidative stress in PC12 cells. Amyloid, 8, 194–201.

    Article  PubMed  CAS  Google Scholar 

  • Hernanz, A., De la Fuente, M., Navarro, M., & Frank, A. (2007). Plasma aminothiol compounds, but not serum tumor necrosis factor receptor II and soluble receptor for advanced glycation end products, are related to the cognitive impairment in Alzheimer’s disease and mild cognitive impairment patients. Neuroimmunomodulation, 14, 163–167.

    Article  PubMed  CAS  Google Scholar 

  • Herring, A., Blome, M., Ambree, O., Sachser, N., Paulus, W., & Keyvani, K. (2010). Reduction of cerebral oxidative stress following environmental enrichment in mice with Alzheimer-like pathology. Brain Pathology, 20, 166–175.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch-Reinshagen, V., Burgess, B. L., & Wellington, C. L. (2009). Why lipids are important for Alzheimer disease? Molecular and Cellular Biochemistry, 326, 121–129.

    Article  PubMed  CAS  Google Scholar 

  • Hong, H., Liu, L. P., Liao, J. M., Wang, T. S., Ye, F. Y., Wu, J., et al. (2009). Downregulation of LRP1 [correction of LPR1] at the blood–brain barrier in streptozotocin-induced diabetic mice. Neuropharmacology, 56, 1054–1059.

    Article  PubMed  CAS  Google Scholar 

  • Horstmann, S., Budig, L., Gardner, H., Koziol, J., Deuschle, M., Schilling, C., et al. (2010). Matrix metalloproteinases in peripheral blood and cerebrospinal fluid in patients with Alzheimer’s disease. International Psychogeriatrics, 22, 966–972.

    Article  PubMed  Google Scholar 

  • Huang, X., Moir, R. D., Tanzi, R. E., Bush, A. I., & Rogers, J. T. (2004). Redox-active metals, oxidative stress, and Alzheimer’s disease pathology. Annals of the New York Academy of Sciences, 1012, 153–163.

    Article  PubMed  CAS  Google Scholar 

  • Hyodo, F., Chuang, K. H., Goloshevsky, A. G., Sulima, A., Griffiths, G. L., Mitchell, J. B., et al. (2008). Brain redox imaging using blood–brain barrier-permeable nitroxide MRI contrast agent. Journal of Cerebral Blood Flow and Metabolism, 28, 1165–1174.

    Article  PubMed  CAS  Google Scholar 

  • Igarashi, Y., Utsumi, H., Chiba, H., Yamada-Sasamori, Y., Tobioka, H., Kamimura, Y., et al. (1999). Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood–brain barrier. Biochemical and Biophysical Research Communications, 261, 108–112.

    Article  PubMed  CAS  Google Scholar 

  • Ill-Raga, G., Ramos-Fernandez, E., Guix, F. X., Tajes, M., Bosch-Morato, M., Palomer, E., et al. (2010). Amyloid-beta peptide fibrils induce nitro-oxidative stress in neuronal cells. Journal of Alzheimer’s Disease, 22, 641–652.

    PubMed  CAS  Google Scholar 

  • Jaeger, L. B., Dohgu, S., Hwang, M. C., Farr, S. A., Murphy, M. P., Fleegal-DeMotta, M. A., et al. (2009a). Testing the neurovascular hypothesis of Alzheimer’s disease: LRP-1 antisense reduces blood–brain barrier clearance, increases brain levels of amyloid-beta protein, and impairs cognition. Journal of Alzheimer’s Disease, 17, 553–570.

    PubMed  CAS  Google Scholar 

  • Jaeger, L. B., Dohgu, S., Sultana, R., Lynch, J. L., Owen, J. B., Erickson, M. A., et al. (2009b). Lipopolysaccharide alters the blood–brain barrier transport of amyloid beta protein: A mechanism for inflammation in the progression of Alzheimer’s disease. Brain, Behavior, and Immunity, 23, 507–517.

    Article  PubMed  CAS  Google Scholar 

  • Jeynes, B., & Provias, J. (2008). Evidence for altered LRP/RAGE expression in Alzheimer lesion pathogenesis. Current Alzheimer Research, 5, 432–437.

    Article  PubMed  CAS  Google Scholar 

  • Ji, Y., Permanne, B., Sigurdsson, E. M., Holtzman, D. M., & Wisniewski, T. (2001). Amyloid beta40/42 clearance across the blood–brain barrier following intra-ventricular injections in wild-type, apoE knock-out and human apoE3 or E4 expressing transgenic mice. Journal of Alzheimer’s Disease, 3, 23–30.

    PubMed  CAS  Google Scholar 

  • Jian Liu, K., & Rosenberg, G. A. (2005). Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radical Biology and Medicine, 39, 71–80.

    Article  PubMed  CAS  Google Scholar 

  • John, G. R., Chen, L., Rivieccio, M. A., Melendez-Vasquez, C. V., Hartley, A., & Brosnan, C. F. (2004). Interleukin-1beta induces a reactive astroglial phenotype via deactivation of the Rho GTPase-Rock axis. Journal of Neuroscience, 24, 2837–2845.

    Article  PubMed  CAS  Google Scholar 

  • Jomova, K., Vondrakova, D., Lawson, M., & Valko, M. (2010). Metals, oxidative stress and neurodegenerative disorders. Molecular and Cellular Biochemistry, 345, 91–104.

    Article  PubMed  CAS  Google Scholar 

  • Joseph, J. A., Denisova, N., Villalobos-Molina, R., Erat, S., & Strain, J. (1996). Oxidative stress and age-related neuronal deficits. Molecular and Chemical Neuropathology, 28, 35–40.

    Article  PubMed  CAS  Google Scholar 

  • Joshi, G., Sultana, R., Perluigi, M., & Butterfield, D. A. (2005). In vivo protection of synaptosomes from oxidative stress mediated by Fe2+/H2O2 or 2,2-azobis-(2-amidinopropane) dihydrochloride by the glutathione mimetic tricyclodecan-9-yl-xanthogenate. Free Radical Biology and Medicine, 38, 1023–1031.

    Article  PubMed  CAS  Google Scholar 

  • Kalaria, R. N. (1997). Cerebrovascular degeneration is related to amyloid-beta protein deposition in Alzheimer’s disease. Annals of the New York Academy of Sciences, 826, 263–271.

    Article  PubMed  CAS  Google Scholar 

  • Kalaria, R. N. (2002). Small vessel disease and Alzheimer’s dementia: Pathological considerations. Cerebrovascular Diseases, 13(Suppl 2), 48–52.

    Article  PubMed  CAS  Google Scholar 

  • Kalaria, R. N., & Harik, S. I. (1989). Reduced glucose transporter at the blood–brain barrier and in cerebral cortex in Alzheimer disease. Journal of Neurochemistry, 53, 1083–1088.

    Article  PubMed  CAS  Google Scholar 

  • Kang, R., Tang, D., Loze, M. T., & Zeh, H. J. (2011). Apoptosis to autophagy switch triggered by the MHC class III-encoded receptor for advanced glycation endproducts (RAGE). Autophagy, 7, 91–93.

    Article  PubMed  Google Scholar 

  • Kanski, J., Aksenova, M., Schoneich, C., & Butterfield, D. A. (2002). Substitution of isoleucine-31 by helical-breaking proline abolishes oxidative stress and neurotoxic properties of Alzheimer’s amyloid beta-peptide. Free Radical Biology and Medicine, 32, 1205–1211.

    Article  PubMed  CAS  Google Scholar 

  • Kawai, M., Kalaria, R. N., Harik, S. I., & Perry, G. (1990). The relationship of amyloid plaques to cerebral capillaries in Alzheimer’s disease. American Journal of Pathology, 137, 1435–1446.

    PubMed  CAS  Google Scholar 

  • Kawas, C. H., & Corrada, M. M. (2006). Alzheimer’s and dementia in the oldest-old: A century of challenges. Current Alzheimer Research, 3, 411–419.

    Article  PubMed  CAS  Google Scholar 

  • Kingsley, M. (2006). Effects of phosphatidylserine supplementation on exercising humans. Sports Medicine, 36, 657–669.

    Article  PubMed  Google Scholar 

  • Kitamura, Y. (1998). Functional activation of glial cells in early and delayed episodes of the brain damage. Nippon Yakurigaku Zasshi, 111, 147–156.

    Article  PubMed  CAS  Google Scholar 

  • Klegeris, A., Walker, D. G., & McGeer, P. L. (1997). Interaction of Alzheimer beta-amyloid peptide with the human monocytic cell line THP-1 results in a protein kinase C-dependent secretion of tumor necrosis factor-alpha. Brain Research, 747, 114–121.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, K., Hayashi, M., Nakano, H., Shimazaki, M., Sugimori, K., & Koshino, Y. (2004). Correlation between astrocyte apoptosis and Alzheimer changes in gray matter lesions in Alzheimer’s disease. Journal of Alzheimer’s Disease, 6, 623–632 (discussion 673–681).

    Google Scholar 

  • Koczyk, D., & Oderfeld-Nowak, B. (2000). Long-term microglial and astroglial activation in the hippocampus of trimethyltin-intoxicated rat: Stimulation of NGF and TrkA immunoreactivities in astroglia but not in microglia. International Journal of Developmental Neuroscience, 18, 591–606.

    Article  PubMed  CAS  Google Scholar 

  • Koistinaho, M., Lin, S., Wu, X., Esterman, M., Koger, D., Hanson, J., et al. (2004). Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nature Medicine, 10, 719–726.

    Article  PubMed  CAS  Google Scholar 

  • Kovacic, P., & Somanathan, R. (2011). Cell signaling and receptors with resorcinols and flavonoids: Redox, reactive oxygen species, and physiological effects. Journal of Receptor and Signal Transduction Research, 31, 265–270.

    Article  PubMed  CAS  Google Scholar 

  • Kurt, M. A., Davies, D. C., & Kidd, M. (1997). Paired helical filament morphology varies with intracellular location in Alzheimer’s disease brain. Neuroscience Letters, 239, 41–44.

    Article  PubMed  CAS  Google Scholar 

  • Laws, S. M., Perneczky, R., Wagenpfeil, S., Muller, U., Forstl, H., Martins, R. N., et al. (2005). TNF polymorphisms in Alzheimer disease and functional implications on CSF beta-amyloid levels. Human Mutation, 26, 29–35.

    Article  PubMed  CAS  Google Scholar 

  • Le Sueur, L. P., Collares-Buzato, C. B., & da Cruz-Hofling, M. A. (2004). Mechanisms involved in the blood–brain barrier increased permeability induced by Phoneutria nigriventer spider venom in rats. Brain Research, 1027, 38–47.

    Article  PubMed  CAS  Google Scholar 

  • Leake, A., Morris, C. M., & Whateley, J. (2000). Brain matrix metalloproteinase 1 levels are elevated in Alzheimer’s disease. Neuroscience Letters, 291, 201–203.

    Article  PubMed  CAS  Google Scholar 

  • Lecanu, L., Greeson, J., & Papadopoulos, V. (2006). Beta-amyloid and oxidative stress jointly induce neuronal death, amyloid deposits, gliosis, and memory impairment in the rat brain. Pharmacology, 76, 19–33.

    Article  PubMed  CAS  Google Scholar 

  • Lee, R. K., Araki, W., & Wurtman, R. J. (1997). Stimulation of amyloid precursor protein synthesis by adrenergic receptors coupled to cAMP formation. Proceedings of the National Academy of Sciences of the United States of America, 94, 5422–5426.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. J., Han, S. B., Nam, S. Y., Oh, K. W., & Hong, J. T. (2010a). Inflammation and Alzheimer’s disease. Archives of Pharmacal Research, 33, 1539–1556.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E. O., Kang, J. L., & Chong, Y. H. (2005). The amyloid-beta peptide suppresses transforming growth factor-beta1-induced matrix metalloproteinase-2 production via Smad7 expression in human monocytic THP-1 cells. The Journal of Biological Chemistry, 280, 7845–7853.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K. W., Kim, J. B., Seo, J. S., Kim, T. K., Im, J. Y., Baek, I. S., et al. (2009). Behavioral stress accelerates plaque pathogenesis in the brain of Tg2576 mice via generation of metabolic oxidative stress. Journal of Neurochemistry, 108, 165–175.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. H., Lee, N. H., Bhattarai, G., Yun, J. S., Kim, T. I., Jhee, E. C., et al. (2010b). PPARgamma inhibits inflammatory reaction in oxidative stress induced human diploid fibloblast. Cell Biochemistry and Function, 28, 490–496.

    Article  PubMed  CAS  Google Scholar 

  • Lehner, C., Gehwolf, R., Tempfer, H., Krizbai, I., Hennig, B., Bauer, H. C., et al. (2011). Oxidative stress and blood–brain barrier dysfunction under particular consideration of matrix metalloproteinases. Antioxidants & Redox Signaling.

  • Levy, E., Prelli, F., & Frangione, B. (2006). Studies on the first described Alzheimer’s disease amyloid beta mutant, the Dutch variant. Journal of Alzheimer’s Disease, 9, 329–339.

    PubMed  CAS  Google Scholar 

  • Li, X., Alafuzoff, I., Soininen, H., Winblad, B., & Pei, J. J. (2005). Levels of mTOR and its downstream targets 4E-BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimer’s disease brain. FEBS J, 272, 4211–4220.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y. J., Scott, W. K., Zhang, L., Lin, P. I., Oliveira, S. A., Skelly, T., et al. (2006). Revealing the role of glutathione S-transferase omega in age-at-onset of Alzheimer and Parkinson diseases. Neurobiology of Aging, 27, 1087–1093.

    Article  PubMed  CAS  Google Scholar 

  • Liao, M. C., & Van Nostrand, W. E. (2010). Degradation of soluble and fibrillar amyloid beta-protein by matrix metalloproteinase (MT1-MMP) in vitro. Biochemistry, 49, 1127–1136.

    Article  PubMed  CAS  Google Scholar 

  • Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., & Cole, G. M. (2001a). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. Journal of Neuroscience, 21, 8370–8377.

    PubMed  CAS  Google Scholar 

  • Lim, G. P., Yang, F., Chu, T., Gahtan, E., Ubeda, O., Beech, W., et al. (2001b). Ibuprofen effects on Alzheimer pathology and open field activity in APPsw transgenic mice. Neurobiology of Aging, 22, 983–991.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Y. L., Liu, C. C., Chuang, J. I., Lei, H. Y., Yeh, T. M., Lin, Y. S., et al. (2000). Involvement of oxidative stress, NF-IL-6, and RANTES expression in dengue-2-virus-infected human liver cells. Virology, 276, 114–126.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H., Funke, S. A., & Willbold, D. (2010). Transport of Alzheimer disease amyloid-beta-binding d-amino acid peptides across an in vitro blood–brain barrier model. Rejuvenation Research, 13, 210–213.

    Article  PubMed  CAS  Google Scholar 

  • Liu, L. P., Hong, H., Liao, J. M., Wang, T. S., Wu, J., Chen, S. S., et al. (2009a). Upregulation of RAGE at the blood–brain barrier in streptozotocin-induced diabetic mice. Synapse, 63, 636–642.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q., Zhang, J., Tran, H., Verbeek, M. M., Reiss, K., Estus, S., et al. (2009b). LRP1 shedding in human brain: roles of ADAM10 and ADAM17. Molecular Neurodegeneration, 4, 17.

    Article  PubMed  CAS  Google Scholar 

  • Lochhead, J. J., McCaffrey, G., Quigley, C. E., Finch, J., DeMarco, K. M., Nametz, N., et al. (2010). Oxidative stress increases blood–brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. Journal of Cerebral Blood Flow and Metabolism, 30, 1625–1636.

    Article  PubMed  CAS  Google Scholar 

  • Loh, K. P., Huang, S. H., De Silva, R., Tan, B. K., & Zhu, Y. Z. (2006). Oxidative stress: Apoptosis in neuronal injury. Current Alzheimer Research, 3, 327–337.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzl, S., Albers, D. S., Relkin, N., Ngyuen, T., Hilgenberg, S. L., Chirichigno, J., et al. (2003). Increased plasma levels of matrix metalloproteinase-9 in patients with Alzheimer’s disease. Neurochemistry International, 43, 191–196.

    Article  PubMed  CAS  Google Scholar 

  • Love, S. (1999). Oxidative stress in brain ischemia. Brain Pathology, 9, 119–131.

    Article  PubMed  CAS  Google Scholar 

  • Lue, L. F., Yan, S. D., Stern, D. M., & Walker, D. G. (2005). Preventing activation of receptor for advanced glycation endproducts in Alzheimer’s disease. Current Drug Targets. CNS and Neurological Disorders, 4, 249–266.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, T., Cherny, R. A., & Bush, A. I. (2000). Oxidative processes in Alzheimer’s disease: The role of abeta-metal interactions. Experimental Gerontology, 35, 445–451.

    Article  PubMed  CAS  Google Scholar 

  • Ma, G. J. (1987). The relationship of astrocyte activation and fibrous gliosis to the development of Alzheimer type I cells in Wilson disease. Zhonghua Bing Li Xue Za Zhi, 16, 7–10.

    PubMed  CAS  Google Scholar 

  • Maccioni, R. B., Rojo, L. E., Fernandez, J. A., & Kuljis, R. O. (2009). The role of neuroimmunomodulation in Alzheimer’s disease. Annals of the New York Academy of Sciences, 1153, 240–246.

    Article  PubMed  CAS  Google Scholar 

  • Mancuso, M., Orsucci, D., LoGerfo, A., Calsolaro, V., & Siciliano, G. (2010). Clinical features and pathogenesis of Alzheimer’s disease: Involvement of mitochondria and mitochondrial DNA. Advances in Experimental Medicine and Biology, 685, 34–44.

    Article  PubMed  CAS  Google Scholar 

  • Mancuso, C., Scapagini, G., Curro, D., Giuffrida Stella, A. M., De Marco, C., Butterfield, D. A., et al. (2007). Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Frontiers in Bioscience, 12, 1107–1123.

    Article  PubMed  CAS  Google Scholar 

  • Marchesi, V. T. (2011). Alzheimer’s dementia begins as a disease of small blood vessels, damaged by oxidative-induced inflammation and dysregulated amyloid metabolism: Implications for early detection and therapy. FASEB J, 25, 5–13.

    Article  PubMed  CAS  Google Scholar 

  • Markesbery, W. R., & Carney, J. M. (1999). Oxidative alterations in Alzheimer’s disease. Brain Pathology, 9, 133–146.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Aragon, S., Bermejo-Bescos, P., Benedi, J., Felici, E., Gil, P., Ribera, J. M., et al. (2009). Metalloproteinase’s activity and oxidative stress in mild cognitive impairment and Alzheimer’s disease. Neurochemical Research, 34, 373–378.

    Article  PubMed  CAS  Google Scholar 

  • Masliah, E., Raber, J., Alford, M., Mallory, M., Mattson, M. P., Yang, D., et al. (1998). Amyloid protein precursor stimulates excitatory amino acid transport. Implications for roles in neuroprotection and pathogenesis. The Journal of Biological Chemistry, 273, 12548–12554.

    Article  PubMed  CAS  Google Scholar 

  • Matos, M., Augusto, E., Oliveira, C. R., & Agostinho, P. (2008). Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: involvement of oxidative stress and mitogen-activated protein kinase cascades. Neuroscience, 156, 898–910.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P. (1994). Calcium and neuronal injury in Alzheimer’s disease. Contributions of beta-amyloid precursor protein mismetabolism, free radicals, and metabolic compromise. Annals of the New York Academy of Sciences, 747, 50–76.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P., & Chan, S. L. (2003). Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium, 34, 385–397.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., & Rydel, R. E. (1992). Beta-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. Journal of Neuroscience, 12, 376–389.

    PubMed  CAS  Google Scholar 

  • Mattson, M. P., Pedersen, W. A., Duan, W., Culmsee, C., & Camandola, S. (1999). Cellular and molecular mechanisms underlying perturbed energy metabolism and neuronal degeneration in Alzheimer’s and Parkinson’s diseases. Annals of the New York Academy of Sciences, 893, 154–175.

    Article  PubMed  CAS  Google Scholar 

  • McAlpine, F. E., Lee, J. K., Harms, A. S., Ruhn, K. A., Blurton-Jones, M., Hong, J., et al. (2009). Inhibition of soluble TNF signaling in a mouse model of Alzheimer’s disease prevents pre-plaque amyloid-associated neuropathology. Neurobiology of Diseases, 34, 163–177.

    Article  CAS  Google Scholar 

  • McConlogue, L., Buttini, M., Anderson, J. P., Brigham, E. F., Chen, K. S., Freedman, S. B., et al. (2007). Partial reduction of BACE1 has dramatic effects on Alzheimer plaque and synaptic pathology in APP Transgenic Mice. The Journal of Biological Chemistry, 282, 26326–26334.

    Article  PubMed  CAS  Google Scholar 

  • McNiff, P. A., Laliberte, R. E., Svensson, L., Pazoles, C. J., & Gabel, C. A. (1995). Inhibition of cytokine activation processes in vitro by tenidap, a novel anti-inflammatory agent. Cytokine, 7, 196–208.

    Article  PubMed  CAS  Google Scholar 

  • Medeiros, R., Prediger, R. D., Passos, G. F., Pandolfo, P., Duarte, F. S., Franco, J. L., et al. (2007). Connecting TNF-alpha signaling pathways to iNOS expression in a mouse model of Alzheimer’s disease: Relevance for the behavioral and synaptic deficits induced by amyloid beta protein. Journal of Neuroscience, 27, 5394–5404.

    Article  PubMed  CAS  Google Scholar 

  • Mehlhorn, G., Hollborn, M., & Schliebs, R. (2000). Induction of cytokines in glial cells surrounding cortical beta-amyloid plaques in transgenic Tg2576 mice with Alzheimer pathology. International Journal of Developmental Neuroscience, 18, 423–431.

    Article  PubMed  CAS  Google Scholar 

  • Mhatre, M., Floyd, R. A., & Hensley, K. (2004). Oxidative stress and neuroinflammation in Alzheimer’s disease and amyotrophic lateral sclerosis: Common links and potential therapeutic targets. Journal of Alzheimer’s Disease, 6, 147–157.

    PubMed  CAS  Google Scholar 

  • Middeldorp, J., van den Berge, S. A., Aronica, E., Speijer, D., & Hol, E. M. (2009). Specific human astrocyte subtype revealed by affinity purified GFAP antibody; unpurified serum cross-reacts with neurofilament-L in Alzheimer. PLoS One, 4, e7663.

    Article  PubMed  CAS  Google Scholar 

  • Minter, R. M., Rectenwald, J. E., Fukuzuka, K., Tannahill, C. L., La Face, D., Tsai, V., et al. (2000). TNF-alpha receptor signaling and IL-10 gene therapy regulate the innate and humoral immune responses to recombinant adenovirus in the lung. Journal of Immunology, 164, 443–451.

    CAS  Google Scholar 

  • Misonou, H., Morishima-Kawashima, M., & Ihara, Y. (2000). Oxidative stress induces intracellular accumulation of amyloid beta-protein (Abeta) in human neuroblastoma cells. Biochemistry, 39, 6951–6959.

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa, T. (2010). Vascular pathology in Alzheimer’s disease. Psychogeriatrics, 10, 39–44.

    Article  PubMed  Google Scholar 

  • Mlekusch, R., & Humpel, C. (2009). Matrix metalloproteinases-2 and -3 are reduced in cerebrospinal fluid with low beta-amyloid1-42 levels. Neuroscience Letters, 466, 135–138.

    Article  PubMed  CAS  Google Scholar 

  • Moreira, P. I., Santos, M. S., Oliveira, C. R., Shenk, J. C., Nunomura, A., Smith, M. A., et al. (2008). Alzheimer disease and the role of free radicals in the pathogenesis of the disease. CNS & Neurological Disorders Drug Targets, 7, 3–10.

    Article  CAS  Google Scholar 

  • Mosley, R. L., Benner, E. J., Kadiu, I., Thomas, M., Boska, M. D., Hasan, K., et al. (2006). Neuroinflammation, oxidative stress and the pathogenesis of Parkinson’s disease. Clinical Neuroscience Research, 6, 261–281.

    Article  PubMed  CAS  Google Scholar 

  • Mrak, R. E., & Griffinbc, W. S. (2001). The role of activated astrocytes and of the neurotrophic cytokine S100B in the pathogenesis of Alzheimer’s disease. Neurobiology of Aging, 22, 915–922.

    Article  PubMed  CAS  Google Scholar 

  • Multhaup, G. (2006). Amyloid precursor protein and BACE function as oligomers. Neurodegenerative Diseases, 3, 270–274.

    Article  PubMed  CAS  Google Scholar 

  • Nadler, Y., Alexandrovich, A., Grigoriadis, N., Hartmann, T., Rao, K. S., Shohami, E., et al. (2008). Increased expression of the gamma-secretase components presenilin-1 and nicastrin in activated astrocytes and microglia following traumatic brain injury. Glia, 56, 552–567.

    Article  PubMed  Google Scholar 

  • Nalivaeva, N. N., Fisk, L. R., Belyaev, N. D., & Turner, A. J. (2008). Amyloid-degrading enzymes as therapeutic targets in Alzheimer’s disease. Current Alzheimer Research, 5, 212–224.

    Article  PubMed  CAS  Google Scholar 

  • Nanetti, L., Vignini, A., Moroni, C., Bartolini, M., Luzzi, S., Provinciali, L., et al. (2005). Peroxynitrite production and NOS expression in astrocytes U373MG incubated with lipoproteins from Alzheimer patients. Brain Research, 1054, 38–44.

    Article  PubMed  CAS  Google Scholar 

  • Newby, A. C., Southgate, K. M., & Davies, M. (1994). Extracellular matrix degrading metalloproteinases in the pathogenesis of arteriosclerosis. Basic Research in Cardiology, 89(Suppl 1), 59–70.

    PubMed  CAS  Google Scholar 

  • Newman, M., Musgrave, I. F., & Lardelli, M. (2007). Alzheimer disease: Amyloidogenesis, the presenilins and animal models. Biochimica et Biophysica Acta, 1772, 285–297.

    PubMed  CAS  Google Scholar 

  • Niki, E. (2009). Lipid peroxidation: physiological levels and dual biological effects. Free Radical Biology and Medicine, 47, 469–484.

    Article  PubMed  CAS  Google Scholar 

  • Onyango, I. G., & Khan, S. M. (2006). Oxidative stress, mitochondrial dysfunction, and stress signaling in Alzheimer’s disease. Current Alzheimer Research, 3, 339–349.

    Article  PubMed  CAS  Google Scholar 

  • Op den Velde, W., & Stam, F. C. (1976). Some cerebral proteins and enzyme systems in Alzheimer’s presenile and senile dementia. Journal of the American Geriatrics Society, 24, 12–16.

    PubMed  CAS  Google Scholar 

  • Opii, W. O., Sultana, R., Abdul, H. M., Ansari, M. A., Nath, A., & Butterfield, D. A. (2007). Oxidative stress and toxicity induced by the nucleoside reverse transcriptase inhibitor (NRTI)–2′,3′-dideoxycytidine (ddC): Relevance to HIV-dementia. Experimental Neurology, 204, 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Orrenius, S. (2004). Mitochondrial regulation of apoptotic cell death. Toxicology Letters, 149, 19–23.

    Article  PubMed  CAS  Google Scholar 

  • Owen, J. B., Sultana, R., Aluise, C. D., Erickson, M. A., Price, T. O., Bu, G., et al. (2010). Oxidative modification to LDL receptor-related protein 1 in hippocampus from subjects with Alzheimer disease: Implications for Abeta accumulation in AD brain. Free Radical Biology and Medicine, 49, 1798–1803.

    Article  PubMed  CAS  Google Scholar 

  • Palade, F., Alexa, I. D., Azoicai, D., Panaghiu, L., & Ungureanu, G. (2003). Oxidative stress in atherosclerosis. Revista Medico-Chirurgicala A Societatii de Medici si Naturalisti din Iasi, 107, 502–511.

    PubMed  Google Scholar 

  • Pallas, M., Camins, A., Smith, M. A., Perry, G., Lee, H. G., & Casadesus, G. (2008). From aging to Alzheimer’s disease: unveiling “the switch” with the senescence-accelerated mouse model (SAMP8). Journal of Alzheimer’s Disease, 15, 615–624.

    PubMed  CAS  Google Scholar 

  • Pan, W., Solomon, B., Maness, L. M., & Kastin, A. J. (2002). Antibodies to beta-amyloid decrease the blood-to-brain transfer of beta-amyloid peptide. Experimental Biology and Medicine (Maywood), 227, 609–615.

    CAS  Google Scholar 

  • Paoletti, F., Mocali, A., & Tombaccini, D. (1997). Cysteine proteinases are responsible for characteristic transketolase alterations in Alzheimer fibroblasts. Journal of Cellular Physiology, 172, 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Papassotiropoulos, A., Hock, C., & Nitsch, R. M. (2001). Genetics of interleukin 6: Implications for Alzheimer’s disease. Neurobiology of Aging, 22, 863–871.

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W. M. (1988). Does the brain’s gatekeeper falter in aging? Neurobiology of Aging, 9, 44–46.

    Article  PubMed  CAS  Google Scholar 

  • Parks, J. K., Smith, T. S., Trimmer, P. A., Bennett, J. P., Jr., & Parker, W. D., Jr. (2001). Neurotoxic Abeta peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. Journal of Neurochemistry, 76, 1050–1056.

    Article  PubMed  CAS  Google Scholar 

  • Pasparakis, M., Alexopoulou, L., Episkopou, V., & Kollias, G. (1996). Immune and inflammatory responses in TNF alpha-deficient mice: A critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. Journal of Experimental Medicine, 184, 1397–1411.

    Article  PubMed  CAS  Google Scholar 

  • Pattison, D. I., Dean, R. T., & Davies, M. J. (2002). Oxidation of DNA, proteins and lipids by DOPA, protein-bound DOPA, and related catechol(amine)s. Toxicology, 177, 23–37.

    Article  PubMed  CAS  Google Scholar 

  • Paul, R., Lorenzl, S., Koedel, U., Sporer, B., Vogel, U., Frosch, M., et al. (1998). Matrix metalloproteinases contribute to the blood–brain barrier disruption during bacterial meningitis. Annals of Neurology, 44, 592–600.

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, N. L., Berg, S., Johansson, B., Johansson, K., Viitanen, M., Winblad, B., et al. (1998). Genetic factors are often found in Alzheimer disease. An extensive twin study to clarify the heredity-environment relationship. Lakartidningen, 95, 2585–2588.

    PubMed  CAS  Google Scholar 

  • Pereira, C., Santos, M. S., & Oliveira, C. (1999). Involvement of oxidative stress on the impairment of energy metabolism induced by A beta peptides on PC12 cells: Protection by antioxidants. Neurobiology of Diseases, 6, 209–219.

    Article  CAS  Google Scholar 

  • Pflanzner, T., Janko, M. C., Andre-Dohmen, B., Reuss, S., Weggen, S., Roebroek, A. J., et al. (2010). LRP1 mediates bidirectional transcytosis of amyloid-beta across the blood–brain barrier. Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2010.05.025.

  • Pike, C. J., Walencewicz, A. J., Glabe, C. G., & Cotman, C. W. (1991). In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain Research, 563, 311–314.

    Article  PubMed  CAS  Google Scholar 

  • Pillai, S., Oresajo, C., & Hayward, J. (2005). Ultraviolet radiation and skin aging: Roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation—A review. International Journal of Cosmetic Science, 27, 17–34.

    Article  PubMed  CAS  Google Scholar 

  • Pimplikar, S. W. (2009). Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. International Journal of Biochemistry and Cell Biology, 41, 1261–1268.

    Article  PubMed  CAS  Google Scholar 

  • Poleshchuk, N. N., Votyakov, V. I., Ilkevich Yu, G., Duboiskaya, G. P., Grigoriev, D. G., & Kolomiets, N. D. (1992). Structural and functional changes of blood–brain barrier and indication of prion amyloid filaments in experimental amyotrophic leucospongiosis. Acta Virologica, 36, 293–303.

    PubMed  CAS  Google Scholar 

  • Popescu, B. O., Toescu, E. C., Popescu, L. M., Bajenaru, O., Muresanu, D. F., Schultzberg, M., et al. (2009). Blood–brain barrier alterations in ageing and dementia. Journal of the Neurological Sciences, 283, 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Pratico, D., Uryu, K., Leight, S., Trojanoswki, J. Q., & Lee, V. M. (2001). Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. Journal of Neuroscience, 21, 4183–4187.

    PubMed  CAS  Google Scholar 

  • Price, D. L., Sisodia, S. S., & Gandy, S. E. (1995). Amyloid beta amyloidosis in Alzheimer’s disease. Current Opinion in Neurology, 8, 268–274.

    Article  PubMed  CAS  Google Scholar 

  • Pun, P. B., Lu, J., & Moochhala, S. (2009). Involvement of ROS in BBB dysfunction. Free Radical Research, 43, 348–364.

    Article  PubMed  CAS  Google Scholar 

  • Putcha, G. V., Harris, C. A., Moulder, K. L., Easton, R. M., Thompson, C. B., & Johnson, E. M., Jr. (2002). Intrinsic and extrinsic pathway signaling during neuronal apoptosis: Lessons from the analysis of mutant mice. Journal of Cell Biology, 157, 441–453.

    Article  PubMed  CAS  Google Scholar 

  • Ramirez, S. H., Potula, R., Fan, S., Eidem, T., Papugani, A., Reichenbach, N., et al. (2009). Methamphetamine disrupts blood–brain barrier function by induction of oxidative stress in brain endothelial cells. Journal of Cerebral Blood Flow and Metabolism, 29, 1933–1945.

    Article  PubMed  CAS  Google Scholar 

  • Rathke-Hartlieb, S., Schmidt, V. C., Jockusch, H., Schmitt-John, T., & Bartsch, J. W. (1999). Spatiotemporal progression of neurodegeneration and glia activation in the wobbler neuropathy of the mouse. Neuroreport, 10, 3411–3416.

    Article  PubMed  CAS  Google Scholar 

  • Readnower, R. D., Chavko, M., Adeeb, S., Conroy, M. D., Pauly, J. R., McCarron, R. M., et al. (2010). Increase in blood–brain barrier permeability, oxidative stress, and activated microglia in a rat model of blast-induced traumatic brain injury. Journal of Neuroscience Research, 88, 3530–3539.

    Article  PubMed  CAS  Google Scholar 

  • Reale, M., Iarlori, C., Gambi, F., Feliciani, C., Salone, A., Toma, L., et al. (2004). Treatment with an acetylcholinesterase inhibitor in Alzheimer patients modulates the expression and production of the pro-inflammatory and anti-inflammatory cytokines. Journal of Neuroimmunology, 148, 162–171.

    Article  PubMed  CAS  Google Scholar 

  • Reed, T., Perluigi, M., Sultana, R., Pierce, W. M., Klein, J. B., Turner, D. M., et al. (2008). Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: Insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer’s disease. Neurobiology of Diseases, 30, 107–120.

    Article  CAS  Google Scholar 

  • Reiter, R. J. (1993). Interactions of the pineal hormone melatonin with oxygen-centered free radicals: A brief review. Brazilian Journal of Medical and Biological Research, 26, 1141–1155.

    PubMed  CAS  Google Scholar 

  • Rogers, J. T., Bush, A. I., Cho, H. H., Smith, D. H., Thomson, A. M., Friedlich, A. L., et al. (2008). Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: Riboregulation against neural oxidative damage in Alzheimer’s disease. Biochemical Society Transactions, 36, 1282–1287.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, J. T., & Lahiri, D. K. (2004). Metal and inflammatory targets for Alzheimer’s disease. Current Drug Targets, 5, 535–551.

    Article  PubMed  CAS  Google Scholar 

  • Roggo, S. (2002). Inhibition of BACE, a promising approach to Alzheimer’s disease therapy. Current Topics in Medicinal Chemistry, 2, 359–370.

    Article  PubMed  CAS  Google Scholar 

  • Rohl, C., Armbrust, E., Herbst, E., Jess, A., Gulden, M., Maser, E., et al. (2010). Mechanisms involved in the modulation of astroglial resistance to oxidative stress induced by activated microglia: Antioxidative systems, peroxide elimination, radical generation, lipid peroxidation. Neurotoxicity Research, 17, 317–331.

    Article  PubMed  CAS  Google Scholar 

  • Rong, L. L., Gooch, C., Szabolcs, M., Herold, K. C., Lalla, E., Hays, A. P., et al. (2005). RAGE: a journey from the complications of diabetes to disorders of the nervous system—Striking a fine balance between injury and repair. Restorative Neurology and Neuroscience, 23, 355–365.

    PubMed  CAS  Google Scholar 

  • Rosenberg, G. A., Estrada, E. Y., & Dencoff, J. E. (1998). Matrix metalloproteinases and TIMPs are associated with blood–brain barrier opening after reperfusion in rat brain. Stroke, 29, 2189–2195.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, R. N., Richter, R. W., Risser, R. C., Taubman, K., Prado-Farmer, I., Ebalo, E., et al. (1996). Genetic factors for the development of Alzheimer disease in the Cherokee Indian. Archives of Neurology, 53, 997–1000.

    PubMed  CAS  Google Scholar 

  • Rosi, S., Ramirez-Amaya, V., Hauss-Wegrzyniak, B., & Wenk, G. L. (2004). Chronic brain inflammation leads to a decline in hippocampal NMDA-R1 receptors. Journal of Neuroinflammation, 1, 12.

    Article  PubMed  CAS  Google Scholar 

  • Rossner, S., Lange-Dohna, C., Zeitschel, U., & Perez-Polo, J. R. (2005). Alzheimer’s disease beta-secretase BACE1 is not a neuron-specific enzyme. Journal of Neurochemistry, 92, 226–234.

    Article  PubMed  CAS  Google Scholar 

  • Roth, K. A. (2001). Caspases, apoptosis, and Alzheimer disease: causation, correlation, and confusion. Journal of Neuropathology and Experimental Neurology, 60, 829–838.

    PubMed  CAS  Google Scholar 

  • Roth, A. D., Ramirez, G., Alarcon, R., & Von Bernhardi, R. (2005). Oligodendrocytes damage in Alzheimer’s disease: Beta amyloid toxicity and inflammation. Biological Research, 38, 381–387.

    Article  PubMed  CAS  Google Scholar 

  • Rowlands, D. J., Chapple, S., Siow, R. C., & Mann, G. E. (2011). Equol-stimulated mitochondrial reactive oxygen species activate endothelial nitric oxide synthase and redox signaling in endothelial cells: Roles for F-actin and GPR30. Hypertension, 57, 833–840.

    Article  PubMed  CAS  Google Scholar 

  • Saarela, M. S., Lehtimaki, T., Rinne, J. O., Hervonen, A., Jylha, M., Roytta, M., et al. (2004). Interaction between matrix metalloproteinase 3 and the epsilon4 allele of apolipoprotein E increases the risk of Alzheimer’s disease in Finns. Neuroscience Letters, 367, 336–339.

    Article  PubMed  CAS  Google Scholar 

  • Saiz, P. A., Garcia-Portilla, M. P., Florez, G., Corcoran, P., Arango, C., Morales, B., et al. (2009). Polymorphisms of the IL-1 gene complex are associated with alcohol dependence in Spanish Caucasians: Data from an association study. Alcoholism, Clinical and Experimental Research, 33, 2147–2153.

    Article  PubMed  CAS  Google Scholar 

  • Sazontova, T. G., Anchishkina, N. A., Zhukova, A. G., Bedareva, I. V., Pylaeva, E. A., Kriventsova, N. A., et al. (2008). Reactive oxygen species and redox-signaling during adaptation to changes of oxygen level. Fiziolohichnyĭ Zhurnal, 54, 18–32.

    PubMed  CAS  Google Scholar 

  • Schmidt, J., Barthel, K., Wrede, A., Salajegheh, M., Bahr, M., & Dalakas, M. C. (2008). Interrelation of inflammation and APP in sIBM: IL-1 beta induces accumulation of beta-amyloid in skeletal muscle. Brain, 131, 1228–1240.

    Article  PubMed  Google Scholar 

  • Schmidt, A. M., Hori, O., Cao, R., Yan, S. D., Brett, J., Wautier, J. L., et al. (1996). RAGE: A novel cellular receptor for advanced glycation end products. Diabetes, 45(Suppl 3), S77–S80.

    PubMed  CAS  Google Scholar 

  • Schroder, R., & Linke, R. P. (1999). Cerebrovascular involvement in systemic AA and AL amyloidosis: A clear haematogenic pattern. Virchows Archiv, 434, 551–560.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, P., Ogata, T., Marchini, C., & Ferroni, S. (2001). Glia-related pathomechanisms in Alzheimer’s disease: A therapeutic target? Mechanisms of Ageing and Development, 123, 47–57.

    Article  PubMed  CAS  Google Scholar 

  • Schubert, P., & Rudolphi, K. (1998). Interfering with the pathologic activation of microglial cells and astrocytes in dementia. Alzheimer Disease and Associated Disorders, 12(Suppl 2), S21–S28.

    PubMed  CAS  Google Scholar 

  • Schulz, T. J., Westermann, D., Isken, F., Voigt, A., Laube, B., Thierbach, R., et al. (2010). Activation of mitochondrial energy metabolism protects against cardiac failure. Aging (Albany NY), 2, 843–853.

    CAS  Google Scholar 

  • Sekut, L., & Connolly, K. (1998). AntiTNF-alpha agents in the treatment of inflammation. Expert Opinion on Investigational Drugs, 7, 1825–1839.

    Article  PubMed  CAS  Google Scholar 

  • Senthilkumar, K., Elumalai, P., Arunkumar, R., Banudevi, S., Gunadharini, N. D., Sharmila, G., et al. (2010). Quercetin regulates insulin like growth factor signaling and induces intrinsic and extrinsic pathway mediated apoptosis in androgen independent prostate cancer cells (PC-3). Molecular and Cellular Biochemistry, 344, 173–184.

    Article  PubMed  CAS  Google Scholar 

  • Sergeant, N., Wattez, A., Galvan-valencia, M., Ghestem, A., David, J. P., Lemoine, J., et al. (2003). Association of ATP synthase alpha-chain with neurofibrillary degeneration in Alzheimer’s disease. Neuroscience, 117, 293–303.

    Article  PubMed  CAS  Google Scholar 

  • Serretti, A., Olgiati, P., & De Ronchi, D. (2007). Genetics of Alzheimer’s disease. A rapidly evolving field. Journal of Alzheimer’s Disease, 12, 73–92.

    PubMed  CAS  Google Scholar 

  • Shaftel, S. S., Griffin, W. S., & O’Banion, M. K. (2008). The role of interleukin-1 in neuroinflammation and Alzheimer disease: An evolving perspective. Journal of Neuroinflammation, 5, 7.

    Article  PubMed  CAS  Google Scholar 

  • Shalit, F., Sredni, B., Stern, L., Kott, E., & Huberman, M. (1994). Elevated interleukin-6 secretion levels by mononuclear cells of Alzheimer’s patients. Neuroscience Letters, 174, 130–132.

    Article  PubMed  CAS  Google Scholar 

  • Shao, Y., Gearing, M., & Mirra, S. S. (1997). Astrocyte-apolipoprotein E associations in senile plaques in Alzheimer disease and vascular lesions: A regional immunohistochemical study. Journal of Neuropathology and Experimental Neurology, 56, 376–381.

    Article  PubMed  CAS  Google Scholar 

  • Shelat, P. B., Chalimoniuk, M., Wang, J. H., Strosznajder, J. B., Lee, J. C., Sun, A. Y., et al. (2008). Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. Journal of Neurochemistry, 106, 45–55.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, B., Gong, K., Niu, Y., Liu, L., Yan, Y., Lu, G., et al. (2009). Inhibition of gamma-secretase activity reduces Abeta production, reduces oxidative stress, increases mitochondrial activity and leads to reduced vulnerability to apoptosis: Implications for the treatment of Alzheimer’s disease. Free Radical Biology and Medicine, 46, 1362–1375.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, J. G., Mrak, R. E., & Griffin, W. S. (1997). Glial-neuronal interactions in Alzheimer disease: Progressive association of IL-1alpha+ microglia and S100beta+ astrocytes with neurofibrillary tangle stages. Journal of Neuropathology and Experimental Neurology, 56, 285–290.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Q., & Gibson, G. E. (2007). Oxidative stress and transcriptional regulation in Alzheimer disease. Alzheimer Disease and Associated Disorders, 21, 276–291.

    Article  PubMed  CAS  Google Scholar 

  • Shibata, N., Ohnuma, T., Higashi, S., Usui, C., Ohkubo, T., Kitajima, A., et al. (2005). Genetic association between matrix metalloproteinase MMP-9 and MMP-3 polymorphisms and Japanese sporadic Alzheimer’s disease. Neurobiology of Aging, 26, 1011–1014.

    Article  PubMed  CAS  Google Scholar 

  • Shimohama, S., Kamiya, S., Taniguchi, T., & Kimura, J. (1998). Intracellular receptors for activated C-kinase in the postmortem human brain: No alteration in Alzheimer disease. Alzheimer Disease and Associated Disorders, 12, 384–386.

    Article  PubMed  CAS  Google Scholar 

  • Simakova, O., & Arispe, N. J. (2011). Fluorescent analysis of the cell-selective Alzheimer’s disease Abeta peptide surface membrane binding: Influence of membrane components. International Journal of Alzheimer’s Disease. doi:10.4061/2011/917629.

  • Simpson, I. A., Carruthers, A., & Vannucci, S. J. (2007). Supply and demand in cerebral energy metabolism: The role of nutrient transporters. Journal of Cerebral Blood Flow and Metabolism, 27, 1766–1791.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, J. E., Ince, P. G., Haynes, L. J., Theaker, R., Gelsthorpe, C., Baxter, L., et al. (2010a). Population variation in oxidative stress and astrocyte DNA damage in relation to Alzheimer-type pathology in the ageing brain. Neuropathology and Applied Neurobiology, 36, 25–40.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, J. E., Ince, P. G., Lace, G., Forster, G., Shaw, P. J., Matthews, F., et al. (2010b). Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiology of Aging, 31, 578–590.

    Article  PubMed  CAS  Google Scholar 

  • Singh, M., Nam, D. T., Arseneault, M., & Ramassamy, C. (2010). Role of by-products of lipid oxidation in Alzheimer’s disease brain: A focus on acrolein. Journal of Alzheimer’s Disease, 21, 741–756.

    PubMed  CAS  Google Scholar 

  • Sisodia, S. S., & Price, D. L. (1995). Role of the beta-amyloid protein in Alzheimer’s disease. FASEB J, 9, 366–370.

    PubMed  CAS  Google Scholar 

  • Sklavounou-Andrikopoulou, A., Chrysomali, E., Iakovou, M., Garinis, G. A., & Karameris, A. (2004). Elevated serum levels of the apoptosis related molecules TNF-alpha, Fas/Apo-1 and Bcl-2 in oral lichen planus. Journal of Oral Pathology and Medicine, 33, 386–390.

    Article  PubMed  CAS  Google Scholar 

  • Slater, A. F., Stefan, C., Nobel, I., van den Dobbelsteen, D. J., & Orrenius, S. (1995). Signalling mechanisms and oxidative stress in apoptosis. Toxicology Letters, 82–83, 149–153.

    Article  PubMed  Google Scholar 

  • Smith, D. G., Cappai, R., & Barnham, K. J. (2007). The redox chemistry of the Alzheimer’s disease amyloid beta peptide. Biochimica et Biophysica Acta, 1768, 1976–1990.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M. A., Hirai, K., Hsiao, K., Pappolla, M. A., Harris, P. L., Siedlak, S. L., et al. (1998). Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. Journal of Neurochemistry, 70, 2212–2215.

    Article  PubMed  CAS  Google Scholar 

  • Smith-Swintosky, V. L., & Mattson, M. P. (1994). Glutamate, beta-amyloid precursor proteins, and calcium mediated neurofibrillary degeneration. Journal of Neural Transmission. Supplementum, 44, 29–45.

    PubMed  CAS  Google Scholar 

  • Sokolova, A., Hill, M. D., Rahimi, F., Warden, L. A., Halliday, G. M., & Shepherd, C. E. (2009). Monocyte chemoattractant protein-1 plays a dominant role in the chronic inflammation observed in Alzheimer’s disease. Brain Pathology, 19, 392–398.

    Article  PubMed  CAS  Google Scholar 

  • Spalletta, G., Bernardini, S., Bellincampi, L., Federici, G., Trequattrini, A., Ciappi, F., et al. (2007). Glutathione S-transferase P1 and T1 gene polymorphisms predict longitudinal course and age at onset of Alzheimer disease. The American Journal of Geriatric Psychiatry, 15, 879–887.

    Article  PubMed  Google Scholar 

  • Squier, T. C. (2001). Oxidative stress and protein aggregation during biological aging. Experimental Gerontology, 36, 1539–1550.

    Article  PubMed  CAS  Google Scholar 

  • Srikanth, V., Maczurek, A., Phan, T., Steele, M., Westcott, B., Juskiw, D., et al. (2011). Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiology of Aging, 32, 763–777.

    Article  PubMed  CAS  Google Scholar 

  • Standridge, J. B. (2006). Vicious cycles within the neuropathophysiologic mechanisms of Alzheimer’s disease. Current Alzheimer Research, 3, 95–108.

    Article  PubMed  CAS  Google Scholar 

  • Stanley, L. C., Mrak, R. E., Woody, R. C., Perrot, L. J., Zhang, S., Marshak, D. R., et al. (1994). Glial cytokines as neuropathogenic factors in HIV infection: Pathogenic similarities to Alzheimer’s disease. Journal of Neuropathology and Experimental Neurology, 53, 231–238.

    Article  PubMed  CAS  Google Scholar 

  • Streit, W. J., Conde, J. R., & Harrison, J. K. (2001). Chemokines and Alzheimer’s disease. Neurobiology of Aging, 22, 909–913.

    Article  PubMed  CAS  Google Scholar 

  • Strongin, A. Y. (2010). Proteolytic and non-proteolytic roles of membrane type-1 matrix metalloproteinase in malignancy. Biochimica et Biophysica Acta, 1803, 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Sultana, R., & Butterfield, D. A. (2008). Alterations of some membrane transport proteins in Alzheimer’s disease: Role of amyloid beta-peptide. Molecular BioSystems, 4, 36–41.

    Article  PubMed  CAS  Google Scholar 

  • Sultana, R., & Butterfield, D. A. (2009). Oxidatively modified, mitochondria-relevant brain proteins in subjects with Alzheimer disease and mild cognitive impairment. Journal of Bioenergetics and Biomembranes, 41, 441–446.

    Article  PubMed  CAS  Google Scholar 

  • Sultana, R., Newman, S., Mohmmad-Abdul, H., Keller, J. N., & Butterfield, D. A. (2004). Protective effect of the xanthate, D609, on Alzheimer’s amyloid beta-peptide (1-42)-induced oxidative stress in primary neuronal cells. Free Radical Research, 38, 449–458.

    Article  PubMed  CAS  Google Scholar 

  • Sultana, R., Poon, H. F., Cai, J., Pierce, W. M., Merchant, M., Klein, J. B., et al. (2006). Identification of nitrated proteins in Alzheimer’s disease brain using a redox proteomics approach. Neurobiology of Diseases, 22, 76–87.

    Article  CAS  Google Scholar 

  • Sun, Y. X., Minthon, L., Wallmark, A., Warkentin, S., Blennow, K., & Janciauskiene, S. (2003). Inflammatory markers in matched plasma and cerebrospinal fluid from patients with Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 16, 136–144.

    Article  PubMed  CAS  Google Scholar 

  • Sung, S., Yang, H., Uryu, K., Lee, E. B., Zhao, L., Shineman, D., et al. (2004). Modulation of nuclear factor-kappa B activity by indomethacin influences A beta levels but not A beta precursor protein metabolism in a model of Alzheimer’s disease. American Journal of Pathology, 165, 2197–2206.

    Article  PubMed  CAS  Google Scholar 

  • Szczepanik, A. M., Funes, S., Petko, W., & Ringheim, G. E. (2001a). IL-4, IL-10 and IL-13 modulate A beta(1-42)-induced cytokine and chemokine production in primary murine microglia and a human monocyte cell line. Journal of Neuroimmunology, 113, 49–62.

    Article  PubMed  CAS  Google Scholar 

  • Szczepanik, A. M., Rampe, D., & Ringheim, G. E. (2001b). Amyloid-beta peptide fragments p3 and p4 induce pro-inflammatory cytokine and chemokine production in vitro and in vivo. Journal of Neurochemistry, 77, 304–317.

    Article  PubMed  CAS  Google Scholar 

  • Tamagno, E., Guglielmotto, M., Aragno, M., Borghi, R., Autelli, R., Giliberto, L., et al. (2008). Oxidative stress activates a positive feedback between the gamma- and beta-secretase cleavages of the beta-amyloid precursor protein. Journal of Neurochemistry, 104, 683–695.

    PubMed  CAS  Google Scholar 

  • Tamagno, E., Parola, M., Guglielmotto, M., Santoro, G., Bardini, P., Marra, L., et al. (2003). Multiple signaling events in amyloid beta-induced, oxidative stress-dependent neuronal apoptosis. Free Radical Biology and Medicine, 35, 45–58.

    Article  PubMed  CAS  Google Scholar 

  • Tang, B. L. (2009). Neuronal protein trafficking associated with Alzheimer disease: From APP and BACE1 to glutamate receptors. Cell Adhesion & Migration, 3, 118–128.

    Article  Google Scholar 

  • Tarkowski, E., Blennow, K., Wallin, A., & Tarkowski, A. (1999). Intracerebral production of tumor necrosis factor-alpha, a local neuroprotective agent, in Alzheimer disease and vascular dementia. Journal of Clinical Immunology, 19, 223–230.

    Article  PubMed  CAS  Google Scholar 

  • Terai, K., Matsuo, A., & McGeer, P. L. (1996). Enhancement of immunoreactivity for NF-kappa B in the hippocampal formation and cerebral cortex of Alzheimer’s disease. Brain Research, 735, 159–168.

    Article  PubMed  CAS  Google Scholar 

  • Thirumangalakudi, L., Samany, P. G., Owoso, A., Wiskar, B., & Grammas, P. (2006). Angiogenic proteins are expressed by brain blood vessels in Alzheimer’s disease. Journal of Alzheimer’s Disease, 10, 111–118.

    PubMed  CAS  Google Scholar 

  • Tibolla, G., Norata, G. D., Meda, C., Arnaboldi, L., Uboldi, P., Piazza, F., et al. (2010). Increased atherosclerosis and vascular inflammation in APP transgenic mice with apolipoprotein E deficiency. Atherosclerosis, 210, 78–87.

    Article  PubMed  CAS  Google Scholar 

  • Tilleux, S., & Hermans, E. (2007). Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. Journal of Neuroscience Research, 85, 2059–2070.

    Article  PubMed  CAS  Google Scholar 

  • Tombaccini, D., Mocali, A., & Paoletti, F. (1994). Characteristic transketolase alterations in dermal fibroblasts of Alzheimer patients are modulated by culture conditions. Experimental and Molecular Pathology, 60, 140–146.

    Article  PubMed  CAS  Google Scholar 

  • Tripathy, D., Thirumangalakudi, L., & Grammas, P. (2007). Expression of macrophage inflammatory protein 1-alpha is elevated in Alzheimer’s vessels and is regulated by oxidative stress. Journal of Alzheimer’s Disease, 11, 447–455.

    PubMed  CAS  Google Scholar 

  • Uematsu, Y., Hirano, A., Kawano, H., & Llena, J. F. (1989). The astrocyte-endothelial interface in cerebellar astrocytoma. No Shinkei Geka, 17, 999–1004.

    PubMed  CAS  Google Scholar 

  • Vassar, R. (2002). Beta-secretase (BACE) as a drug target for Alzheimer’s disease. Advanced Drug Delivery Reviews, 54, 1589–1602.

    Article  PubMed  CAS  Google Scholar 

  • Vassar, R. (2004). BACE1: The beta-secretase enzyme in Alzheimer’s disease. Journal of Molecular Neuroscience, 23, 105–114.

    Article  PubMed  CAS  Google Scholar 

  • Vassar, R., Bennett, B. D., Babu-Khan, S., Kahn, S., Mendiaz, E. A., Denis, P., et al. (1999). Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 286, 735–741.

    Article  PubMed  CAS  Google Scholar 

  • Velez-Pardo, C., Ospina, G. G., & Jimenez del Rio, M. (2002). Abeta[25-35] peptide and iron promote apoptosis in lymphocytes by an oxidative stress mechanism: Involvement of H2O2, caspase-3, NF-kappaB, p53 and c-Jun. Neurotoxicology, 23, 351–365.

    Article  PubMed  CAS  Google Scholar 

  • Venugopal, C., Demos, C. M., Rao, K. S., Pappolla, M. A., & Sambamurti, K. (2008). Beta-secretase: Structure, function, and evolution. CNS & Neurological Disorders Drug Targets, 7, 278–294.

    Article  CAS  Google Scholar 

  • Volicer, L., & Crino, P. B. (1990). Involvement of free radicals in dementia of the Alzheimer type: A hypothesis. Neurobiology of Aging, 11, 567–571.

    Article  PubMed  CAS  Google Scholar 

  • Wan, L., Nie, G., Zhang, J., Luo, Y., Zhang, P., Zhang, Z., et al. (2011). Beta-amyloid peptide increases levels of iron content and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease. Free Radical Biology and Medicine, 50, 122–129.

    Article  PubMed  CAS  Google Scholar 

  • Wang, M., & Jia, J. (2010). The interleukin-6 gene-572C/G promoter polymorphism modifies Alzheimer’s risk in APOE epsilon 4 carriers. Neuroscience Letters, 482, 260–263.

    Article  PubMed  CAS  Google Scholar 

  • White, A. R., Du, T., Laughton, K. M., Volitakis, I., Sharples, R. A., Xilinas, M. E., et al. (2006). Degradation of the Alzheimer disease amyloid beta-peptide by metal-dependent up-regulation of metalloprotease activity. The Journal of Biological Chemistry, 281, 17670–17680.

    Article  PubMed  CAS  Google Scholar 

  • Whitson, J. S., & Appel, S. H. (1995). Neurotoxicity of A beta amyloid protein in vitro is not altered by calcium channel blockade. Neurobiology of Aging, 16, 5–10.

    Article  PubMed  CAS  Google Scholar 

  • Williams, K., Ulvestad, E., Waage, A., Antel, J. P., & McLaurin, J. (1994). Activation of adult human derived microglia by myelin phagocytosis in vitro. Journal of Neuroscience Research, 38, 433–443.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, R. S., Weir, D. R., Leurgans, S. E., Evans, D. A., Hebert, L. E., Langa, K. M., et al. (2011). Sources of variability in estimates of the prevalence of Alzheimer’s disease in the United States. Alzheimers Dementia, 7, 74–79.

    Article  Google Scholar 

  • Wong, A., Luth, H. J., Deuther-Conrad, W., Dukic-Stefanovic, S., Gasic-Milenkovic, J., Arendt, T., et al. (2001). Advanced glycation endproducts co-localize with inducible nitric oxide synthase in Alzheimer’s disease. Brain Research, 920, 32–40.

    Article  PubMed  CAS  Google Scholar 

  • Woodle, E. S., & Kulkarni, S. (1998). Programmed cell death. Transplantation, 66, 681–691.

    Article  PubMed  CAS  Google Scholar 

  • Wyss-Coray, T. (2006). Inflammation in Alzheimer disease: Driving force, bystander or beneficial response? Nature Medicine, 12, 1005–1015.

    PubMed  CAS  Google Scholar 

  • Xia, M. Q., & Hyman, B. T. (1999). Chemokines/chemokine receptors in the central nervous system and Alzheimer’s disease. Journal of Neurovirology, 5, 32–41.

    Article  PubMed  CAS  Google Scholar 

  • Xia, M. Q., Qin, S. X., Wu, L. J., Mackay, C. R., & Hyman, B. T. (1998). Immunohistochemical study of the beta-chemokine receptors CCR3 and CCR5 and their ligands in normal and Alzheimer’s disease brains. American Journal of Pathology, 153, 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, M., Kiyota, T., Horiba, M., Buescher, J. L., Walsh, S. M., Gendelman, H. E., et al. (2007). Interferon-gamma and tumor necrosis factor-alpha regulate amyloid-beta plaque deposition and beta-secretase expression in Swedish mutant APP transgenic mice. American Journal of Pathology, 170, 680–692.

    Article  PubMed  CAS  Google Scholar 

  • Yan, S. D., Bierhaus, A., Nawroth, P. P., & Stern, D. M. (2009). RAGE and Alzheimer’s disease: A progression factor for amyloid-beta-induced cellular perturbation? Journal of Alzheimer’s Disease, 16, 833–843.

    PubMed  Google Scholar 

  • Yan, J. J., Cho, J. Y., Kim, H. S., Kim, K. L., Jung, J. S., Huh, S. O., et al. (2001). Protection against beta-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. British Journal of Pharmacology, 133, 89–96.

    Article  PubMed  CAS  Google Scholar 

  • Yan, F. L., Zheng, Y., & Zhao, F. D. (2008). Effects of ginkgo biloba extract EGb761 on expression of RAGE and LRP-1 in cerebral microvascular endothelial cells under chronic hypoxia and hypoglycemia. Acta Neuropathologica, 116, 529–535.

    Article  PubMed  Google Scholar 

  • Yang, Y., Quitschke, W. W., & Brewer, G. J. (1998a). Upregulation of amyloid precursor protein gene promoter in rat primary hippocampal neurons by phorbol ester, IL-1 and retinoic acid, but not by reactive oxygen species. Brain Research. Molecular Brain Research, 60, 40–49.

    Article  PubMed  CAS  Google Scholar 

  • Yang, F., Sun, X., Beech, W., Teter, B., Wu, S., Sigel, J., et al. (1998b). Antibody to caspase-cleaved actin detects apoptosis in differentiated neuroblastoma and plaque-associated neurons and microglia in Alzheimer’s disease. American Journal of Pathology, 152, 379–389.

    PubMed  CAS  Google Scholar 

  • Yao, Y., Chinnici, C., Tang, H., Trojanowski, J. Q., Lee, V. M., & Pratico, D. (2004). Brain inflammation and oxidative stress in a transgenic mouse model of Alzheimer-like brain amyloidosis. Journal of Neuroinflammation, 1, 21.

    Article  PubMed  CAS  Google Scholar 

  • Yatin, S. M., Varadarajan, S., Link, C. D., & Butterfield, D. A. (1999). In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid beta-peptide (1–42). Neurobiology of Aging, 20, 325–330 (discussion 339–342).

    Google Scholar 

  • Yoshiyama, Y., Asahina, M., & Hattori, T. (2000). Selective distribution of matrix metalloproteinase-3 (MMP-3) in Alzheimer’s disease brain. Acta Neuropathologica, 99, 91–95.

    Article  PubMed  CAS  Google Scholar 

  • Yu, W., Mechawar, N., Krantic, S., & Quirion, R. (2010). Evidence for the involvement of apoptosis-inducing factor-mediated caspase-independent neuronal death in Alzheimer disease. American Journal of Pathology, 176, 2209–2218.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Bukulin, M., Kojro, E., Roth, A., Metz, V. V., Fahrenholz, F., et al. (2008). Receptor for advanced glycation end products is subjected to protein ectodomain shedding by metalloproteinases. The Journal of Biological Chemistry, 283, 35507–35516.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Luhrs, K. J., Ryff, K. A., Malik, W. T., Driscoll, M. J., & Culver, B. (2009). Suppression of nuclear factor kappa B ameliorates astrogliosis but not amyloid burden in APPswe/PS1dE9 mice. Neuroscience, 161, 53–58.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, M., Mao, Y., Ramirez, S. H., Tuma, R. F., & Chabrashvili, T. (2010). Angiotensin II induced cerebral microvascular inflammation and increased blood–brain barrier permeability via oxidative stress. Neuroscience, 171, 852–858.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Xu, J., Levin, J., Hegen, M., Li, G., Robertshaw, H., et al. (2004). Identification and characterization of 4-[[4-(2-butynyloxy)phenyl]sulfonyl]-N-hydroxy-2,2-dimethyl-(3S)thiomorpho linecarboxamide (TMI-1), a novel dual tumor necrosis factor-alpha-converting enzyme/matrix metalloprotease inhibitor for the treatment of rheumatoid arthritis. Journal of Pharmacology and Experimental Therapeutics, 309, 348–355.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, M., Cribbs, D. H., Anderson, A. J., Cummings, B. J., Su, J. H., Wasserman, A. J., et al. (2003). The induction of the TNFalpha death domain signaling pathway in Alzheimer’s disease brain. Neurochemical Research, 28, 307–318.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, D., Lauderback, C. M., Yu, T., Brown, S. A., Butterfield, D. A., & Thompson, J. S. (2001). D609 inhibits ionizing radiation-induced oxidative damage by acting as a potent antioxidant. Journal of Pharmacology and Experimental Therapeutics, 298, 103–109.

    PubMed  CAS  Google Scholar 

  • Zhu, W., Mix, E., & Zhu, J. (2003). Inflammation and proinflammatory cytokine production, but no demyelination of facial nerves, in experimental autoimmune neuritis in Lewis rats. Journal of Neuroimmunology, 140, 97–101.

    Article  PubMed  CAS  Google Scholar 

  • Zlokovic, B. V., Deane, R., Sagare, A. P., Bell, R. D., & Winkler, E. A. (2010). Low-density lipoprotein receptor-related protein-1: A serial clearance homeostatic mechanism controlling Alzheimer’s amyloid beta-peptide elimination from the brain. Journal of Neurochemistry, 115, 1077–1089.

    Article  PubMed  CAS  Google Scholar 

  • Zouambia, M., Fischer, D. F., Hobo, B., De Vos, R. A., Hol, E. M., Varndell, I. M., et al. (2008). Proteasome subunit proteins and neuropathology in tauopathies and synucleinopathies: Consequences for proteomic analyses. Proteomics, 8, 1221–1236.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Lin Lu (Department of Pathology, University of Kansas Medical Center, KUMC) for his encouragement and opinion and Dr. Hongren Wang and Dr. Chunhua Li (KUMC) for designing help. This work was supported by the National Nature Science Foundation of China (81070878/H0902) to Dr. Bin Zhao and Start-up Funds from Texas A&M HSC to Dr. Anna Ratka.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Zhao or Anna Ratka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Z., Zhao, B. & Ratka, A. Oxidative Stress and β-Amyloid Protein in Alzheimer’s Disease. Neuromol Med 13, 223–250 (2011). https://doi.org/10.1007/s12017-011-8155-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-011-8155-9

Keywords

Navigation