Skip to main content

Advertisement

Log in

Differential Expression of miRNAs in Papillary Thyroid Carcinoma Compared to Multinodular Goiter Using Formalin Fixed Paraffin Embedded Tissues

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

microRNAs (miRNAs) are approximately 22 nt RNAs that negatively regulate target gene expression. Their dysregulation has been implicated in the pathogenesis of a number of human cancers, including papillary thyroid carcinoma (PTC). Whereas previous studies using microarray technologies have largely relied on the ability to procure fresh tissue at the time of surgery to characterize miRNA signatures in PTC, we exploited the ability to procure sufficient miRNA from formalin-fixed paraffin-embedded (FFPE) tissue to describe a series of miRNAs whose expression is dysregulated in PTC compared to benign proliferative multinodular goiter (MNG). We identified 13 miRNAs upregulated and 26 miRNAs downregulated in PTC versus MNG. These include miRNA-21, miRNA-31, miRNA-221, and miRNA-222. Their dysregulation was further validated by real time RT-PCR analysis in an independent set of FFPE tissues. Many of these have previously been described in fresh tissue studies as altered in PTC, confirming the utility of this approach. These results further highlight the applicability of miRNA expression patterns as potential markers of human cancer, and our results suggest that FFPE tissues are suitable resources for such miRNA expression analyses. The ability to utilize FFPE tissue in the molecular characterization of human malignancy will unlock a rich resource for future cancer studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hundahl SA, Fleming ID, Fremgen AM, Menck HR. A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995. Cancer 83 12:2638–2648, 1998.

    Article  PubMed  CAS  Google Scholar 

  2. Begum S, Rosenbaum E, Henrique R, Cohen Y, Sidransky D, Westra WH. BRAF mutations in anaplastic thyroid carcinoma: implications for tumor origin, diagnosis and treatment. Mod Pathol 17 11:1359–63, 2004.

    Article  PubMed  CAS  Google Scholar 

  3. Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B, Beller U, Westra WH, Ladenson PW, Sidransky D. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 95 8:625–7, 2003.

    Article  PubMed  CAS  Google Scholar 

  4. Fukushima T, Suzuki S, Mashiko M, Ohtake T, Endo Y, Takebayashi Y, Sekikawa K, Hagiwara K, Takenoshita S. BRAF mutations in papillary carcinomas of the thyroid. Oncogene 22 41:6455–7, 2003.

    Article  PubMed  CAS  Google Scholar 

  5. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63 7:1454–7, 2003.

    PubMed  CAS  Google Scholar 

  6. Namba H, Nakashima M, Hayashi T, Hayashida N, Maeda S, Rogounovitch TI, Ohtsuru A, Saenko VA, Kanematsu T, Yamashita S. Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J Clin Endocrinol Metab 88 9:4393–7, 2003.

    Article  PubMed  CAS  Google Scholar 

  7. Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F, Zhu Z, Giannini R, Salvatore G, Fusco A et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 88 11:5399–404, 2003.

    Article  PubMed  CAS  Google Scholar 

  8. Soares P, Trovisco V, Rocha AS, Lima J, Castro P, Preto A, Maximo V, Botelho T, Seruca R, Sobrinho-Simoes M. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 22 29:4578–80, 2003.

    Article  PubMed  CAS  Google Scholar 

  9. Tetzlaff MT, LiVolsi V, Baloch ZW. Assessing the utility of a mutational assay for B-RAF as an adjunct to conventional fine needle aspiration of the thyroid gland. Adv Anat Pathol 13 5:228–37, 2006.

    Article  PubMed  Google Scholar 

  10. Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer 12 2:245–62, 2005.

    Article  PubMed  CAS  Google Scholar 

  11. Xu X, Quiros RM, Gattuso P, Ain KB, Prinz RA. High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Res 63 15:4561–7, 2003.

    PubMed  CAS  Google Scholar 

  12. Cheung L, Messina M, Gill A, Clarkson A, Learoyd D, Delbridge L, Wentworth J, Philips J, Clifton-Bligh R, Robinson BG. Detection of the PAX8–PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 88 1:354–7, 2003.

    Article  PubMed  CAS  Google Scholar 

  13. Dwight T, Thoppe SR, Foukakis T, Lui WO, Wallin G, Hoog A, Frisk T, Larsson C, Zedenius J. Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab 88 9:4440–5, 2003.

    Article  PubMed  CAS  Google Scholar 

  14. Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM, Fletcher JA. PAX8–PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science 289 5483:1357–60, 2000.

    Article  PubMed  CAS  Google Scholar 

  15. Marques AR, Espadinha C, Catarino AL, Moniz S, Pereira T, Sobrinho LG, Leite V. Expression of PAX8–PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 87 8:3947–52, 2002.

    Article  PubMed  CAS  Google Scholar 

  16. Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG, Nikiforov YE. PAX8–PPARgamma rearrangement in thyroid tumors. RT-PCR and immunohistochemical analyses. Am J Surg Pathol 26 8:1016–23, 2002.

    Article  PubMed  Google Scholar 

  17. Esapa CT, Johnson SJ, Kendall-Taylor P, Lennard TW, Harris PE. Prevalence of Ras mutations in thyroid neoplasia. Clin Endocrinol (Oxf) 50 4:529–35, 1999.

    Article  CAS  Google Scholar 

  18. Lemoine NR, Mayall ES, Wyllie FS, Williams ED, Goyns M, Stringer B, Wynford-Thomas D. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene 4 2:159–64, 1989.

    PubMed  CAS  Google Scholar 

  19. Namba H, Rubin SA, Fagin JA. Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol 4 10:1474–9, 1990.

    Article  PubMed  CAS  Google Scholar 

  20. Suarez HG. Genetic alterations in human epithelial thyroid tumours. Clin Endocrinol (Oxf) 48 5:531–46, 1998.

    Article  CAS  Google Scholar 

  21. Vasko V, Ferrand M, Di Cristofaro J, Carayon P, Henry JF, de Micco C. Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J Clin Endocrinol Metab 88 6:2745–52, 2003.

    Article  PubMed  CAS  Google Scholar 

  22. Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol 120 1:71–7, 2003.

    Article  PubMed  CAS  Google Scholar 

  23. Bounacer A, Wicker R, Caillou B, Cailleux AF, Sarasin A, Schlumberger M, Suarez HG. High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene 15 11:1263–73, 1997.

    Article  PubMed  CAS  Google Scholar 

  24. Cinti R, Yin L, Ilc K, Berger N, Basolo F, Cuccato S, Giannini R, Torre G, Miccoli P, Amati P et al. RET rearrangements in papillary thyroid carcinomas and adenomas detected by interphase FISH. Cytogenet Cell Genet 88 1–2:56–61, 2000.

    Article  PubMed  CAS  Google Scholar 

  25. Elisei R, Romei C, Vorontsova T, Cosci B, Veremeychik V, Kuchinskaya E, Basolo F, Demidchik EP, Miccoli P, Pinchera A et al. RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab 86 7:3211–6, 2001.

    Article  PubMed  CAS  Google Scholar 

  26. Nikiforova MN, Caudill CM, Biddinger P, Nikiforov YE. Prevalence of RET/PTC rearrangements in Hashimoto’s thyroiditis and papillary thyroid carcinomas. Int J Surg Pathol 10 1:15–22, 2002.

    Article  PubMed  CAS  Google Scholar 

  27. Pierotti MA, Santoro M, Jenkins RB, Sozzi G, Bongarzone I, Grieco M, Monzini N, Miozzo M, Herrmann MA, Fusco A et al. Characterization of an inversion on the long arm of chromosome 10 juxtaposing D10S170 and RET and creating the oncogenic sequence RET/PTC. Proc Natl Acad Sci USA 89 5:1616–20, 1992.

    Article  PubMed  CAS  Google Scholar 

  28. Sadetzki S, Calderon-Margalit R, Modan B, Srivastava S, Tuttle RM. Ret/PTC activation in benign and malignant thyroid tumors arising in a population exposed to low-dose external-beam irradiation in childhood. J Clin Endocrinol Metab 89 5:2281–9, 2004.

    Article  PubMed  CAS  Google Scholar 

  29. Tallini G, Santoro M, Helie M, Carlomagno F, Salvatore G, Chiappetta G, Carcangiu ML, Fusco A. RET/PTC oncogene activation defines a subset of papillary thyroid carcinomas lacking evidence of progression to poorly differentiated or undifferentiated tumor phenotypes. Clin Cancer Res 4 2:287–94, 1998.

    PubMed  CAS  Google Scholar 

  30. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116 2:281–97, 2004.

    Article  PubMed  CAS  Google Scholar 

  31. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 6 11:857–66, 2006.

    Article  PubMed  CAS  Google Scholar 

  32. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99 24:15524–9, 2002.

    Article  PubMed  CAS  Google Scholar 

  33. Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N, Abajo A, Navarro A, Moreno I, Monzo M et al. Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5:29, 2006.

    Article  PubMed  CAS  Google Scholar 

  34. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101 32:11755–60, 2004.

    Article  PubMed  CAS  Google Scholar 

  35. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65 14:6029–33, 2005.

    Article  PubMed  CAS  Google Scholar 

  36. Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Farace MG. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334 4:1351–8, 2005.

    Article  PubMed  CAS  Google Scholar 

  37. He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin GA, Liu CG, Franssila K, Suster S et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102 52:19075–80, 2005.

    Article  PubMed  CAS  Google Scholar 

  38. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65 16:7065–70, 2005.

    Article  PubMed  CAS  Google Scholar 

  39. Kutay H, Bai S, Datta J, Motiwala T, Pogribny I, Frankel W, Jacob ST, Ghoshal K. Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 99 3:671–8, 2006.

    Article  PubMed  CAS  Google Scholar 

  40. Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL, Morgan DL, Postier RG, Brackett DJ, Schmittgen TD. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120 5:1046–54, 2007.

    Article  PubMed  CAS  Google Scholar 

  41. Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A. High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39 2:167–9, 2004.

    Article  PubMed  CAS  Google Scholar 

  42. Michael MZ, SM OC, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1 12:882–91, 2003.

    PubMed  CAS  Google Scholar 

  43. Pallante P, Visone R, Ferracin M, Ferraro A, Berlingieri MT, Troncone G, Chiappetta G, Liu CG, Santoro M, Negrini M et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer 13 2:497–508, 2006.

    Article  PubMed  CAS  Google Scholar 

  44. Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S, Calin GA, Volinia S, Liu CG, Scarpa A et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 24 29:4677–84, 2006.

    Article  PubMed  CAS  Google Scholar 

  45. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth. Oncogene 26 19:2799–803, 2006.

    Article  PubMed  CAS  Google Scholar 

  46. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64 11:3753–6, 2004.

    Article  PubMed  CAS  Google Scholar 

  47. Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A, Labourier E, Hahn SA. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene 26 30:4442–52, 2007.

    Article  PubMed  CAS  Google Scholar 

  48. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA et al. MicroRNA expression profiles classify human cancers. Nature 435 7043:834–8, 2005.

    Article  PubMed  CAS  Google Scholar 

  49. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103 7:2257–61, 2006.

    Article  PubMed  CAS  Google Scholar 

  50. Nelson PT, Baldwin DA, Kloosterman WP, Kauppinen S, Plasterk RH, Mourelatos Z. RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA 12 2:187–91, 2006.

    Article  PubMed  CAS  Google Scholar 

  51. Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1 2:155–61, 2004.

    Article  PubMed  CAS  Google Scholar 

  52. Lawrie CH, Soneji S, Marafioti T, Cooper CD, Palazzo S, Paterson JC, Cattan H, Enver T, Mager R, Boultwood J et al. Microrna expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer 121 5:1156–61, 2007.

    Article  PubMed  CAS  Google Scholar 

  53. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353 17:1793–801, 2005.

    Article  PubMed  CAS  Google Scholar 

  54. Baloch ZW, LiVolsi VA. Fine-needle aspiration of thyroid nodules: past, present, and future. Endocr Pract 10 3:234–41, 2004.

    PubMed  Google Scholar 

  55. Lubitz CC, Ugras SK, Kazam JJ, Zhu B, Scognamiglio T, Chen YT, Fahey TJ, 3rd. Microarray analysis of thyroid nodule fine-needle aspirates accurately classifies benign and malignant lesions. J Mol Diagnostics 8 4:490–8, 2006.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MTT wishes to thank Dr. Gerald Wertheim for the insightful discussions and advice throughout the course of this project and Dr. Stephen J. Elledge for the insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Tetzlaff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12022_2007_23_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tetzlaff, M.T., Liu, A., Xu, X. et al. Differential Expression of miRNAs in Papillary Thyroid Carcinoma Compared to Multinodular Goiter Using Formalin Fixed Paraffin Embedded Tissues. Endocr Pathol 18, 163–173 (2007). https://doi.org/10.1007/s12022-007-0023-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-007-0023-7

Keywords

Navigation