Skip to main content

Advertisement

Log in

Negative regulators in homeostasis of naïve peripheral T cells

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

It is now apparent that naïve peripheral T cells are a dynamic population where active processes prevent inappropriate activation while supporting survival. The process of thymic education makes naïve peripheral T cells dependent on interactions with self-MHC for survival. However, as these signals can potentially result in inappropriate activation, various non-redundant, intrinsic negative regulatory molecules including Tob, Nfatc2, and Smad3 actively enforce T cell quiescence. Interactions among these pathways are only now coming to light and may include positive or negative crosstalk. In the case of positive crosstalk, self-MHC initiated signals and intrinsic negative regulatory factors may cooperate to dampen T cell activation and sustain peripheral tolerance in a binary fashion (on–off). In the case of negative crosstalk, self-MHC signals may promote survival through partial activation while intrinsic negative regulatory factors act as rheostats to restrain cell cycle entry and prevent T cells from crossing a threshold that would break tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. CM Jubala et al., MHC-dependent desensitization of intrinsic anti-self reactivity. Submitted.

References

  1. Boyman O, Purton JF, Surh CD, Sprent J. Cytokines and T-cell homeostasis. Curr Opin Immunol. 2007;19:320–6.

    Article  PubMed  CAS  Google Scholar 

  2. Cho JH, Boyman O, Kim HO, Hahm B, Rubinstein MP, Ramsey C, et al. An intense form of homeostatic proliferation of naive CD8+ cells driven by IL-2. J Exp Med. 2007;204:1787–801.

    Article  PubMed  CAS  Google Scholar 

  3. Kamimura D, Bevan MJ. Naive CD8+ T cells differentiate into protective memory-like cells after IL-2 anti IL-2 complex treatment in vivo. J Exp Med. 2007;204:1803–12.

    Article  PubMed  CAS  Google Scholar 

  4. Sandau MM, Winstead CJ, Jameson SC. IL-15 is required for sustained lymphopenia-driven proliferation and accumulation of CD8 T cells. J Immunol. 2007;179:120–5.

    PubMed  CAS  Google Scholar 

  5. Goldrath AW, Bogatzki LY, Bevan MJ. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J Exp Med. 2000;192:557–64.

    Article  PubMed  CAS  Google Scholar 

  6. Kieper WC, Jameson SC. Homeostatic expansion and phenotypic conversion of naive T cells in response to self peptide/MHC ligands. Proc Natl Acad Sci USA. 1999;96:13306–11.

    Article  PubMed  CAS  Google Scholar 

  7. Bhandoola A, Tai X, Eckhaus M, Auchincloss H, Mason K, Rubin SA, et al. Peripheral expression of self-MHC-II influences the reactivity and self-tolerance of mature CD4(+) T cells: evidence from a lymphopenic T cell model. Immunity. 2002;17:425–36.

    Article  PubMed  CAS  Google Scholar 

  8. Goldrath AW, Luckey CJ, Park R, Benoist C, Mathis D. The molecular program induced in T cells undergoing homeostatic proliferation. Proc Natl Acad Sci USA. 2004;101:16885–90.

    Article  PubMed  CAS  Google Scholar 

  9. Hamilton SE, Wolkers MC, Schoenberger SP, Jameson SC. The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells. Nat Immunol. 2006;7:475–81.

    Article  PubMed  CAS  Google Scholar 

  10. Troy AE, Shen H. Cutting edge: homeostatic proliferation of peripheral T lymphocytes is regulated by clonal competition. J Immunol. 2003;170:672–6.

    PubMed  CAS  Google Scholar 

  11. Min B, Foucras G, Meier-Schellersheim M, Paul WE. Spontaneous proliferation, a response of naive CD4 T cells determined by the diversity of the memory cell repertoire. Proc Natl Acad Sci USA. 2004;101:3874–9.

    Article  PubMed  CAS  Google Scholar 

  12. Tan JT, Ernst B, Kieper WC, LeRoy E, Sprent J, Surh CD. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J Exp Med. 2002;195:1523–32.

    Article  PubMed  CAS  Google Scholar 

  13. Shen S, Ding Y, Tadokoro CE, Olivares-Villagomez D, Camps-Ramirez M, Curotto de Lafaille MA, et al. Control of homeostatic proliferation by regulatory T cells. J Clin Invest. 2005;115:3517–26.

    Article  PubMed  CAS  Google Scholar 

  14. Surh CD, Boyman O, Purton JF, Sprent J. Homeostasis of memory T cells. Immunol Rev. 2006;211:154–63.

    Article  PubMed  CAS  Google Scholar 

  15. Li O, Chang X, Zhang H, Kocak E, Ding C, Zheng P, et al. Massive and destructive T cell response to homeostatic cue in CD24-deficient lymphopenic hosts. J Exp Med. 2006;203:1713–20.

    Article  PubMed  CAS  Google Scholar 

  16. Nesic D, Vukmanovic S. MHC class I is required for peripheral accumulation of CD8+ thymic emigrants. J Immunol. 1998;160:3705–12.

    PubMed  CAS  Google Scholar 

  17. Murali-Krishna K, Lau LL, Sambhara S, Lemonnier F, Altman J, Ahmed R. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science. 1999;286:1377–81.

    Article  PubMed  CAS  Google Scholar 

  18. Boursalian TE, Bottomly K. Survival of naive CD4 T cells: roles of restricting versus selecting MHC class II and cytokine milieu. J Immunol. 1999;162:3795–801.

    PubMed  CAS  Google Scholar 

  19. Viret C, Janeway CA Jr. MHC and T cell development. Rev Immunogenet. 1999;1:91–104.

    PubMed  CAS  Google Scholar 

  20. Witherden D, van Oers N, Waltzinger C, Weiss A, Benoist C, Mathis D. Tetracycline-controllable selection of CD4(+) T cells: half-life and survival signals in the absence of major histocompatibility complex class II molecules. J Exp Med. 2000;191:355–64.

    Article  PubMed  CAS  Google Scholar 

  21. Martin B, Bourgeois C, Dautigny N, Lucas B. On the role of MHC class II molecules in the survival and lymphopenia-induced proliferation of peripheral CD4+ T cells. Proc Natl Acad Sci USA. 2003;100:6021–6.

    Article  PubMed  CAS  Google Scholar 

  22. Dorfman JR, Germain RN. MHC-dependent survival of naive T cells? A complicated answer to a simple question. Microbes Infect. 2002;4:547–54.

    Article  PubMed  CAS  Google Scholar 

  23. Jabbari A, Harty JT. Cutting edge: differential self-peptide/MHC requirement for maintaining CD8 T cell function versus homeostatic proliferation. J Immunol. 2005;175:4829–33.

    PubMed  CAS  Google Scholar 

  24. Markiewicz MA, Brown I, Gajewski TF. Death of peripheral CD8+ T cells in the absence of MHC class I is Fas-dependent and not blocked by Bcl-xL. Eur J Immunol. 2003;33:2917–26.

    Article  PubMed  CAS  Google Scholar 

  25. Tanchot C, Lemonnier FA, Perarnau B, Freitas AA, Rocha B. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science. 1997;276:2057–62.

    Article  PubMed  CAS  Google Scholar 

  26. Grandjean I, Duban L, Bonney EA, Corcuff E, Di Santo JP, Matzinger P, et al. Are major histocompatibility complex molecules involved in the survival of naive CD4+ T cells? J Exp Med. 2003;198:1089–102.

    Article  PubMed  CAS  Google Scholar 

  27. Grossman Z, Paul WE. Adaptive cellular interactions in the immune system: the tunable activation threshold and the significance of subthreshold responses. Proc Natl Acad Sci USA. 1992;89:10365–9.

    Article  PubMed  CAS  Google Scholar 

  28. Kassiotis G, Zamoyska R, Stockinger B. Involvement of avidity for major histocompatibility complex in homeostasis of naive and memory T cells. J Exp Med. 2003;197:1007–16.

    Article  PubMed  CAS  Google Scholar 

  29. Kieper WC, Burghardt JT, Surh CD. A role for TCR affinity in regulating naive T cell homeostasis. J Immunol. 2004;172:40–4.

    PubMed  CAS  Google Scholar 

  30. Stefanova I, Dorfman JR, Germain RN. Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature. 2002;420:429–34.

    Article  PubMed  CAS  Google Scholar 

  31. Fischer UB, Jacovetty EL, Medeiros RB, Goudy BD, Zell T, Swanson JB, et al. MHC class II deprivation impairs CD4 T cell motility and responsiveness to antigen-bearing dendritic cells in vivo. Proc Natl Acad Sci USA. 2007;104:7181–6.

    Article  PubMed  Google Scholar 

  32. Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, Reisfeld RA, et al. T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest. 2002;110:185–92.

    PubMed  CAS  Google Scholar 

  33. Hu HM, Poehlein CH, Urba WJ, Fox BA. Development of antitumor immune responses in reconstituted lymphopenic hosts. Cancer Res. 2002;62:3914–9.

    PubMed  CAS  Google Scholar 

  34. Marleau AM, Sarvetnick N. T cell homeostasis in tolerance and immunity. J Leukoc Biol. 2005;78:575–84.

    Article  PubMed  CAS  Google Scholar 

  35. Brown IE, Blank C, Kline J, Kacha AK, Gajewski TF. Homeostatic proliferation as an isolated variable reverses CD8+ T cell anergy and promotes tumor rejection. J Immunol. 2006;177:4521–9.

    PubMed  CAS  Google Scholar 

  36. Bracci L, Moschella F, Sestili P, La Sorsa V, Valentini M, Canini I, et al. Cyclophosphamide enhances the antitumor efficacy of adoptively transferred immune cells through the induction of cytokine expression, B-cell and T-cell homeostatic proliferation, and specific tumor infiltration. Clin Cancer Res. 2007;13:644–53.

    Article  PubMed  CAS  Google Scholar 

  37. Maeda Y, Tawara I, Teshima T, Liu C, Hashimoto D, Matsuoka K, et al. Lymphopenia-induced proliferation of donor T cells reduces their capacity for causing acute graft-versus-host disease. Exp Hematol. 2007;35:274–86.

    Article  PubMed  CAS  Google Scholar 

  38. Anderson BE, McNiff J, Yan J, Doyle H, Mamula M, Shlomchik MJ, et al. Memory CD4+ T cells do not induce graft-versus-host disease. J Clin Invest. 2003;112:101–8.

    PubMed  CAS  Google Scholar 

  39. Chen BJ, Cui X, Sempowski GD, Liu C, Chao NJ. Transfer of allogeneic CD62L- memory T cells without graft-versus-host disease. Blood. 2004;103:1534–41.

    Article  PubMed  CAS  Google Scholar 

  40. Chen BJ, Deoliveira D, Cui X, Le NT, Son J, Whitesides JF, et al. Inability of memory T cells to induce graft-versus-host disease is a result of an abortive alloresponse. Blood. 2007;109:3115–23.

    PubMed  CAS  Google Scholar 

  41. Boise LH, Thompson CB. Hierarchical control of lymphocyte survival. Science. 1996;274:67–8.

    Article  PubMed  CAS  Google Scholar 

  42. Lang JA, Kominski D, Bellgrau D, Scheinman RI. Partial activation precedes apoptotic death in T cells harboring an IAN gene mutation. Eur J Immunol. 2004;34:2396–406.

    Article  PubMed  CAS  Google Scholar 

  43. Baksh S, Widlund HR, Frazer-Abel AA, Du J, Fosmire S, Fisher DE, et al. NFATc2-mediated repression of cyclin-dependent kinase 4 expression. Mol Cell. 2002;10:1071–81.

    Article  PubMed  CAS  Google Scholar 

  44. Frazer-Abel AA, Baksh S, Fosmire SP, Willis D, Pierce AM, Meylemans H, et al. Nicotine activates NFATc2 and prevents cell cycle entry in T cells. J Pharmacol Exp Ther. 2004;311:758–69.

    Article  PubMed  CAS  Google Scholar 

  45. Heissmeyer V, Macian F, Im SH, Varma R, Feske S, Venuprasad K, et al. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nat Immunol. 2004;5:255–65.

    Article  PubMed  CAS  Google Scholar 

  46. Macian F, Garcia-Cozar F, Im SH, Horton HF, Byrne MC, Rao A. Transcriptional mechanisms underlying lymphocyte tolerance. Cell. 2002;109:719–31.

    Article  PubMed  CAS  Google Scholar 

  47. Yusuf I, Fruman DA. Regulation of quiescence in lymphocytes. Trends Immunol. 2003;24:380–6.

    Article  PubMed  CAS  Google Scholar 

  48. Frisch SM. Evidence for a function of death-receptor-related, death-domain- containing proteins in anoikis. Curr Biol. 1999;9:1047–9.

    Article  PubMed  CAS  Google Scholar 

  49. Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol. 2001;13:555–62.

    Article  PubMed  CAS  Google Scholar 

  50. Modiano JF, Ritt MG, Wojcieszyn J, Smith R 3rd. Growth arrest of melanoma cells is differentially regulated by contact inhibition and serum deprivation. DNA Cell Biol. 1999;18:357–67.

    Article  PubMed  CAS  Google Scholar 

  51. Kupfer R, Lang J, Williams-Skipp C, Nelson M, Bellgrau D, Scheinman RI. Loss of a gimap/ian gene leads to activation of NF-kappaB through a MAPK-dependent pathway. Mol Immunol. 2007;44:479–87.

    Article  PubMed  CAS  Google Scholar 

  52. Tzachanis D, Freeman GJ, Hirano N, van Puijenbroek AA, Delfs MW, Berezovskaya A, et al. Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells. Nat Immunol. 2001;2:1174–82.

    Article  PubMed  CAS  Google Scholar 

  53. Letterio JJ. TGF-β signaling in T cells: roles in lymphoid and epithelial neoplasia. Oncogene. 2005;24:5701–12.

    Article  PubMed  CAS  Google Scholar 

  54. Li L, Iwamoto Y, Berezovskaya A, Boussiotis VA. A pathway regulated by cell cycle inhibitor p27Kip1 and checkpoint inhibitor Smad3 is involved in the induction of T cell tolerance. Nat Immunol. 2006;7:1157–65.

    Article  PubMed  CAS  Google Scholar 

  55. Classen S, Zander T, Eggle D, Chemnitz JM, Brors B, Buchmann I, et al. Human resting CD4+ T cells are constitutively inhibited by TGF β under steady-state conditions. J Immunol. 2007;178:6931–40.

    PubMed  CAS  Google Scholar 

  56. McKarns SC, Schwartz RH, Kaminski NE. Smad3 is essential for TGF-β 1 to suppress IL-2 production and TCR-induced proliferation, but not IL-2-induced proliferation. J Immunol. 2004;172:4275–84.

    PubMed  CAS  Google Scholar 

  57. Yang X, Letterio JJ, Lechleider RJ, Chen L, Hayman R, Gu H, et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-β. EMBO J. 1999;18:1280–91.

    Article  PubMed  CAS  Google Scholar 

  58. Nitta T, Takahama Y. The lymphocyte guard-IANs: regulation of lymphocyte survival by IAN/GIMAP family proteins. Trends Immunol. 2007;28:58–65.

    Article  PubMed  CAS  Google Scholar 

  59. MacMurray AJ, Moralejo DH, Kwitek AE, Rutledge EA, Van Yserloo B, Gohlke P, et al. Lymphopenia in the BB rat model of type 1 diabetes is due to a mutation in a novel immune-associated nucleotide (Ian)-related gene. Genome Res. 2002;12:1029–39.

    Article  PubMed  CAS  Google Scholar 

  60. Nitta T, Nasreen M, Seike T, Goji A, Ohigashi I, Miyazaki T, et al. IAN family critically regulates survival and development of T lymphocytes. PLoS Biol. 2006;4:e103.

    Article  PubMed  CAS  Google Scholar 

  61. Keita M, Leblanc C, Andrews D, Ramanathan S. GIMAP5 regulates mitochondrial integrity from a distinct subcellular compartment. Biochem Biophys Res Commun. 2007;361:481–6.

    Article  PubMed  CAS  Google Scholar 

  62. Zadeh HH, Greiner DL, Wu DY, Tausche F, Goldschneider I. Abnormalities in the export and fate of recent thymic emigrants in diabetes-prone BB/W rats. Autoimmunity. 1996;24:35–46.

    Article  PubMed  CAS  Google Scholar 

  63. Ramanathan S, Norwich K, Poussier P. Antigen activation rescues recent thymic emigrants from programmed cell death in the BB rat. J Immunol. 1998;160:5757–64.

    PubMed  CAS  Google Scholar 

  64. Moore JK, Scheinman RI, Bellgrau D. The identification of a novel T cell activation state controlled by a diabetogenic gene. J Immunol. 2001;166:241–8.

    PubMed  CAS  Google Scholar 

  65. Jia S, Meng A. Tob genes in development and homeostasis. Dev Dyn. 2007;236:913–21.

    Article  PubMed  CAS  Google Scholar 

  66. Kawamura-Tsuzuku J, Suzuki T, Yoshida Y, Yamamoto T. Nuclear localization of Tob is important for regulation of its antiproliferative activity. Oncogene. 2004;23:6630–8.

    Article  PubMed  CAS  Google Scholar 

  67. Maekawa M, Nishida E, Tanoue T. Identification of the anti-proliferative protein Tob as a MAPK substrate. J Biol Chem. 2002;277:37783–7.

    Article  PubMed  CAS  Google Scholar 

  68. Suzuki T, Kawamura-Tsuzuku J, Ajima R, Nakamura T, Yoshida Y, Yamamoto T. Phosphorylation of three regulatory serines of Tob by Erk1 and Erk2 is required for Ras-mediated cell proliferation and transformation. Genes Dev. 2002;16:1356–70.

    Article  PubMed  CAS  Google Scholar 

  69. Hiramatsu Y, Kitagawa K, Suzuki T, Uchida C, Hattori T, Kikuchi H, et al. Degradation of Tob1 mediated by SCFSkp2-dependent ubiquitination. Cancer Res. 2006;66:8477–83.

    Article  PubMed  CAS  Google Scholar 

  70. Yamashiro H, Odani Y, Hozumi N, Nakano N. Hierarchical signaling thresholds determine the fates of naive T cells: partial priming leads nai;ve T cells to unresponsiveness. Biochem Biophys Res Commun. 2002;299:148–54.

    Article  PubMed  CAS  Google Scholar 

  71. Kiani A, Rao A, Aramburu J. Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity. 2000;12:359–72.

    Article  PubMed  CAS  Google Scholar 

  72. Xanthoudakis S, Viola JP, Shaw KT, Luo C, Wallace JD, Bozza PT, et al. An enhanced immune response in mice lacking the transcription factor NFAT1. Science. 1996;272:892–5.

    Article  PubMed  CAS  Google Scholar 

  73. Sundrud MS, Rao A. New twists of T cell fate: control of T cell activation and tolerance by TGF-β and NFAT. Curr Opin Immunol. 2007;19:287–93.

    Article  PubMed  CAS  Google Scholar 

  74. Derynck R, Zhang Y, Feng X-H. Transcriptional activators of TGF-[β] responses: smads. Cell. 1998;95:737–40.

    Article  PubMed  CAS  Google Scholar 

  75. Massague J, Weinberg RA. Negative regulators of growth. Curr Opin Genet Dev. 1992;2:28–32.

    Article  PubMed  CAS  Google Scholar 

  76. Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM, et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes Dev. 1994;8:9–22.

    Article  PubMed  CAS  Google Scholar 

  77. Quelle DE, Ashmun RA, Hannon GJ, Rehberger PA, Trono D, Richter KH, et al. Cloning and characterization of murine p16INK4a and p15INK4b genes. Oncogene. 1995;11:635–45.

    PubMed  CAS  Google Scholar 

  78. Kehrl JH, Wakefield LM, Roberts AB, Jakowlew S, Alvarez-Mon M, Derynck R, Sporn MB, et al. Production of transforming growth factor β by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med. 1986;163:1037–50.

    Article  PubMed  CAS  Google Scholar 

  79. McKarns SC, Schwartz RH. Distinct effects of TGF-β 1 on CD4+ and CD8+ T cell survival, division, and IL-2 production: a role for T cell intrinsic Smad3. J Immunol. 2005;174:2071–83.

    PubMed  CAS  Google Scholar 

  80. Ranges GE, Figari IS, Espevik T, Palladino MA Jr. Inhibition of cytotoxic T cell development by transforming growth factor β and reversal by recombinant tumor necrosis factor alpha. J Exp Med. 1987;166:991–8.

    Article  PubMed  CAS  Google Scholar 

  81. Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, et al. Transforming growth factor-[β] induces development of the TH17 lineage. Nature. 2006;441:231–4.

    Article  PubMed  CAS  Google Scholar 

  82. Marie JC, Letterio JJ, Gavin M, Rudensky AY. TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med. 2005;201:1061–7.

    Article  PubMed  CAS  Google Scholar 

  83. Wolfraim LA, Walz TM, James Z, Fernandez T, Letterio JJ. p21Cip1 and p27Kip1 act in synergy to alter the sensitivity of naive T cells to TGF-β-mediated G1 arrest through modulation of IL-2 responsiveness. J Immunol. 2004;173:3093–102.

    PubMed  CAS  Google Scholar 

  84. Modiano JF, Mayor J, Ball C, Fuentes MK, Linthicum DS. Cdk4 expression and activity are required for cytokine responsiveness in T cells. J Immunol. 2000;165:6693–702.

    PubMed  CAS  Google Scholar 

  85. Matsuura I, Denissova NG, Wang G, He D, Long J, Liu F. Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature. 2004;430:226–31.

    Article  PubMed  CAS  Google Scholar 

  86. Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, et al. Transforming growth factor β 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA. 1993;90:770–4.

    Article  PubMed  CAS  Google Scholar 

  87. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, et al. Targeted disruption of the mouse transforming growth factor-β 1 gene results in multifocal inflammatory disease. Nature. 1992;359:693–9.

    Article  PubMed  CAS  Google Scholar 

  88. Diebold RJ, Eis MJ, Yin M, Ormsby I, Boivin GP, Darrow BJ, et al. Early-onset multifocal inflammation in the transforming growth factor β 1-null mouse is lymphocyte mediated. Proc Natl Acad Sci USA. 1995;92:12215–9.

    Article  PubMed  CAS  Google Scholar 

  89. Kobayashi S, Yoshida K, Ward JM, Letterio JJ, Longenecker G, et al. β2-microglobulin-deficient background ameliorates lethal phenotype of the TGF-β1 null mouse. J Immunol. 1999;163:4013–9.

    PubMed  CAS  Google Scholar 

  90. Leveen P, Carlsen M, Makowska A, Oddsson S, Larsson J, Goumans MJ, et al. TGF-β type II receptor-deficient thymocytes develop normally but demonstrate increased CD8+ proliferation in vivo. Blood. 2005;106:4234–40.

    Article  PubMed  CAS  Google Scholar 

  91. Li MO, Sanjabi S, Flavell RA. Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity. 2006;25:455–71.

    Article  PubMed  CAS  Google Scholar 

  92. Lucas PJ, Kim SJ, Melby SJ, Gress RE. Disruption of T cell homeostasis in mice expressing a T cell-specific dominant negative transforming growth factor β II receptor. J Exp Med. 2000;191:1187–96.

    Article  PubMed  CAS  Google Scholar 

  93. Marie JC, Liggitt D, Rudensky AY. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-β receptor. Immunity. 2006;25:441–54.

    Article  PubMed  CAS  Google Scholar 

  94. Gorelik L, Flavell RA. Abrogation of TGF β signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity. 2000;12:171–81.

    Article  PubMed  CAS  Google Scholar 

  95. Lucas PJ, Kim SJ, Mackall CL, Telford WG, Chu YW, Hakim FT, et al. Dysregulation of IL-15-mediated T-cell homeostasis in TGF-β dominant-negative receptor transgenic mice. Blood. 2006;108:2789–95.

    Article  PubMed  CAS  Google Scholar 

  96. Warner BJ, Blain SW, Seoane J, Massague J. Myc downregulation by transforming growth factor β required for activation of the p15Ink4b G1 arrest pathway. Mol Cell Biol. 1999;19:5913–22.

    PubMed  CAS  Google Scholar 

  97. Bianchi T, Gasser S, Trumpp A, MacDonald HR. c-Myc acts downstream of IL-15 in the regulation of memory CD8 T-cell homeostasis. Blood. 2006;107:3992–9.

    Article  PubMed  CAS  Google Scholar 

  98. Campbell JD, Cook G, Robertson SE, Fraser A, Boyd KS, Gracie JA, et al. Suppression of IL-2-induced T cell proliferation and phosphorylation of STAT3 and STAT5 by tumor-derived TGF β is reversed by IL-15. J Immunol. 2001;167:553–61.

    PubMed  CAS  Google Scholar 

  99. Koehler H, Kofler D, Hombach A, Abken H. CD28 costimulation overcomes transforming growth factor-β-mediated repression of proliferation of redirected human CD4+ and CD8+ T cells in an antitumor cell attack. Cancer Res. 2007;67:2265–73.

    Article  PubMed  CAS  Google Scholar 

  100. Sung JL, Lin JT, Gorham JD. CD28 co-stimulation regulates the effect of transforming growth factor-β1 on the proliferation of naive CD4+ T cells. Int Immunopharmacol. 2003;3:233–45.

    Article  PubMed  CAS  Google Scholar 

  101. Ahmadzadeh M, Rosenberg SA. TGF-β 1 attenuates the acquisition and expression of effector function by tumor antigen-specific human memory CD8 T cells. J Immunol. 2005;174:5215–23.

    PubMed  CAS  Google Scholar 

  102. Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nat Med. 2001;7:1118–22.

    Article  PubMed  CAS  Google Scholar 

  103. Zhang Q, Yang XJ, Kundu SD, Pins M, Javonovic B, Meyer R, et al. Blockade of transforming growth factor-β signaling in tumor-reactive CD8+ T cells activates the antitumor immune response cycle. Mol Cancer Ther. 2006;5:1733–43.

    Article  PubMed  CAS  Google Scholar 

  104. Fahlen L, Read S, Gorelik L, Hurst SD, Coffman RL, Flavell RA, et al. T cells that cannot respond to TGF-β escape control by CD4(+)CD25(+) regulatory T cells. J Exp Med. 2005;201:737–46.

    Article  PubMed  CAS  Google Scholar 

  105. Kerstan A, Hunig T. Cutting edge: distinct TCR- and CD28-derived signals regulate CD95L, Bcl-xL, and the survival of primary T cells. J Immunol. 2004;172:1341–5.

    PubMed  CAS  Google Scholar 

  106. Rowell EA, Walsh MC, Wells AD. Opposing roles for the cyclin-dependent kinase inhibitor p27kip1 in the control of CD4+ T cell proliferation and effector function. J Immunol. 2005;174:3359–68.

    PubMed  CAS  Google Scholar 

  107. Wolfraim LA, Letterio JJ. Cutting edge: p27Kip1 deficiency reduces the requirement for CD28-mediated costimulation in naive CD8+ but not CD4+ T lymphocytes. J Immunol. 2005;174:2481–4.

    PubMed  CAS  Google Scholar 

  108. Bettini M, Xi H, Kersh GJ. T cell stimulation in the absence of exogenous antigen: a T cell signal is induced by both MHC-dependent and -independent mechanisms. Eur J Immunol. 2003;33:3109–16.

    Article  PubMed  CAS  Google Scholar 

  109. Berridge MJ. Lymphocyte activation in health and disease. Crit Rev Immunol. 1997;17:155–78.

    PubMed  CAS  Google Scholar 

  110. Janeway CA Jr, Bottomly K. Signals and signs for lymphocyte responses. Cell. 1994;76:275–85.

    Article  PubMed  CAS  Google Scholar 

  111. Shahinian A, Pfeffer K, Lee KP, Kundig TM, Kishihara K, Wakeham A, et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science. 1993;261:609–12.

    Article  PubMed  CAS  Google Scholar 

  112. Kane LP, Weiss A. The PI-3 kinase/Akt pathway and T cell activation: pleiotropic pathways downstream of PIP3. Immunol Rev. 2003;192:7–20.

    Article  PubMed  CAS  Google Scholar 

  113. Okkenhaug K, Vanhaesebroeck B. PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol. 2003;3:317–30.

    Article  PubMed  CAS  Google Scholar 

  114. Okkenhaug K, Vanhaesebroeck B. PI3K-signalling in B- and T-cells: insights from gene-targeted mice. Biochem Soc Trans. 2003;31:270–4.

    Article  PubMed  CAS  Google Scholar 

  115. Altman A, Villalba M. Protein kinase C-theta (PKCtheta): it’s all about location, location, location. Immunol Rev. 2003;192:53–63.

    Article  PubMed  CAS  Google Scholar 

  116. Jones RG, Elford AR, Parsons MJ, Wu L, Krawczyk CM, Yeh WC, et al. CD28-dependent activation of protein kinase B/Akt blocks Fas-mediated apoptosis by preventing death-inducing signaling complex assembly. J Exp Med. 2002;196:335–48.

    Article  PubMed  CAS  Google Scholar 

  117. Sulis ML, Parsons R. PTEN: from pathology to biology. Trends Cell Biol. 2003;13:478–83.

    Article  PubMed  CAS  Google Scholar 

  118. Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP. Impaired Fas response and autoimmunity in Pten+/− mice. Science. 1999;285:2122–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Stephen Jameson for his careful review of the manuscript and helpful suggestions. We regret if meritorious references may have been omitted in the interest of space or brevity. The work was supported by grants R21DK63410, P30CA46934, and R01DK58722 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime F. Modiano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Modiano, J.F., Johnson, L.D.S. & Bellgrau, D. Negative regulators in homeostasis of naïve peripheral T cells. Immunol Res 41, 137–153 (2008). https://doi.org/10.1007/s12026-008-8017-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-008-8017-1

Keywords

Navigation