Skip to main content

Advertisement

Log in

Oligodendroglial Cells and Neurotrophins: A Polyphonic Cantata in Major and Minor

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Oligodendrocytes met neurotrophins in the early 1990s of the last century. Since then, their relationship underwent functional ups and downs partially dependent on the developmental stage of the oligodendroglial cells and the species, from which the cells were derived. This review provides a brief overview of oligodendroglial cells and neurotrophins, characterizes neurotrophin signaling during oligodendroglial development, and discusses the significance of proneurotrophins and sortilin for oligodendroglial death and survival. Furthermore, data are provided that TrkA, the tyrosine kinase competent NGF receptor, is localized to caveolincontaining microdomains on the oligodendroglial plasma membrane; an interplay of caveolin and NGF signaling via TrkA might be of functional importance. Finally, experimental evidence of studies is presented which support the idea that neurotrophins are promising candidates for improving oligodendroglial regeneration and remyelination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Allen, S. J., & Dawbarn, D. (2006). Clinical 4relevance of the neurotrophins and their receptors. Clinical Science, 110, 175–191.

    PubMed  CAS  Google Scholar 

  • Althaus, H. H. (2004). Remyelination in multiple sclerosis: a new role for neurotrophins? Progress in Brain Research, 146, 415–432.

    PubMed  CAS  Google Scholar 

  • Althaus, H. H., & Klöppner, S. (2006). Mature pig oligodendrocytes rapidly process human recombinant pro-nerve growth factor and do not undergo cell death. Journal of Neurochemistry, 98, 506–517.

    PubMed  CAS  Google Scholar 

  • Althaus, H. H., & Richter-Landsberg, C. (2000). Glial cells as targets and producers of neurotrophins. International Review of Cytology, (vol. 197, pp. 203–277). San Diego: Academic.

    Google Scholar 

  • Althaus, H. H., Bürgisser, P., Klöppner, S., et al. (1987). Oligodendrocytes ensheath carbon fibers and produce myelin in vitro. In Glial-Neuronal Communication in Development and Regeneration. NATO ASI Series H 2 pp. 780–798. Berlin: Springer.

    Google Scholar 

  • Althaus, H. H., Hempel, R., Klöppner, S., Engel, J., Schmidt-Schultz, T., Kruska, L., et al. (1997). Nerve growth factor signal transduction in mature pig oligodendrocytes. Journal of Neuroscience Research, 50, 729–742.

    PubMed  CAS  Google Scholar 

  • Althaus, H. H., Klöppner, S., Schmidt-Schultz, T., & Schwartz, P. (1992). Nerve growth factor induces proliferation and enhances fiber regeneration in oligodendrocytes isolated from adult pig brain. Neuroscience Letters, 135, 219–223.

    PubMed  CAS  Google Scholar 

  • Althaus, H. H., Kruska, L., Klöppner, S., & Heumann, R. (1994). Oligodendrocytes isolated from pig or rat, are both target cells for growth factors and cytokines, but respond to a different spectrum. 1st Europ. Meeting on Glial Cell Function in Health and Disease, p.50

  • Althaus, H. H., Montz, H., Neuhoff, V., & Schwartz, P. (1984). Isolation and cultivation of mature oligodendroglial cells. Naturwissenschaften, 71, 309–315.

    PubMed  CAS  Google Scholar 

  • Althaus, H. H., Mursch, K., & Klöppner, S. (2001). Differential response of mature TrkA/p75NTR expressing human and pig oligodendrocytes: aging, does it matter. Microscopy Research and Technique, 52, 689–699.

    PubMed  CAS  Google Scholar 

  • Barde, Y.-A., Edgar, D., & Thoenen, H. (1982). Purification of a new neurotrophic factor from mammalian brain. EMBO Journal, 1, 549–553.

    PubMed  CAS  Google Scholar 

  • Baron, W., Colognato, H., & FFrench-Constant, C. (2005). Integrin-growth factor interactions as regulators of oligodendroglial development and function. Glia, 49, 467–479.

    PubMed  Google Scholar 

  • Barres, B. A., Schmid, R., Sendnter, M., & Raff, M. C. (1993). Multiple extracellular signals are required for long-term oligodendrocyte survival. Development, 118, 283–295.

    PubMed  CAS  Google Scholar 

  • Barres, B. A., Raff, M. C., Gaese, F., Bartke, I., Dechant, G., & Barde, Y. (1994). A crucial role for neurotrophin-3 in oligodendrocyte development. Nature, 367, 371–375.

    PubMed  CAS  Google Scholar 

  • Baumann, N., & Pham-Dinh, D. (2001). Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiological Reviews, 81, 871–927.

    PubMed  CAS  Google Scholar 

  • Beattie, M. S., Harrington, A. W., Lee, R., et al. (2002). ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. Neuron, 36, 375–386.

    PubMed  CAS  Google Scholar 

  • Benarroch, E. E. (2005). Neuro-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clinic Proceedings, 80, 1326–1338.

    Article  PubMed  CAS  Google Scholar 

  • Berninger, B., & Poo, M. M. (1998). Fast actions of neurotrophic factors. Current Opinion in Neurobiology, 6, 324–330.

    Google Scholar 

  • Berry, M., Hubbard, P., & Butt, A. M. (2002). Cytology and lineage of NG2-positive glia. Journal of Neurocytology, 31, 457–467.

    PubMed  CAS  Google Scholar 

  • Bhakar, A. L., Howell, J. L., Paul, C. E., et al. (2003). Apoptosis induced by p75NTR overexpression requires Jun kinase-dependent phosphorylation of Bad. Journal of Neuroscience, 23, 11373–11381.

    PubMed  CAS  Google Scholar 

  • Bierl, M. A., & Isaacson, L. G. (2007). Increased NGF proforms in aged sympathetic neurons and their targets. Neurobiology of Aging, 28, 122–134.

    PubMed  CAS  Google Scholar 

  • Bilderback, T. R., Gazula, V.-R., Lisanti, M. P., & Dobrowsky, R. T. (1999). Caveolin interacts with TrkA and p75NTR and regulates neurotrophin signalling pathways. Journal of Biological Chemistry, 274, 257–263.

    PubMed  CAS  Google Scholar 

  • Blesch, A. (2006). Neurotrophic factors in neurodegeneration. Brain Pathology, 16, 295–303.

    PubMed  CAS  Google Scholar 

  • Blöchl, A., & Blöchl, R. (2007). A cell-biological model of p75NTR signalling. Journal of Neurochemistry, 102, 289–305.

    PubMed  Google Scholar 

  • Bruno, M. A., & Cuello, A. C. (2006). Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade. Proceedings of the National Academy of Sciences of the United States of America, 103, 6735–6740.

    PubMed  CAS  Google Scholar 

  • Butt, A. M., Ibrahim, M., Ruge, F. M., & Berry, M. (1995). Biochemical subtypes of oligodendrocytes in the anterior medullary velum of the rat as revealed by the monoclonal antibody Rip. Glia, 14, 185–197.

    PubMed  CAS  Google Scholar 

  • Buttigieg, H., Kawaja, M., & Fahnestock, M. (2007). Neurotrophic activity of proNGF in vivo. Experimental Neurology, 204, 832–835.

    PubMed  CAS  Google Scholar 

  • Cao, Q., Xu, X.-M., deVries, W. H., et al. (2005). Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. Journal of Neuroscience, 25, 6947–6957.

    PubMed  CAS  Google Scholar 

  • Carmen, J., Magnus, T., Cassiani-Ingoni, R., Sherman, L., Rao, M. S., & Mattson, M. R. (2007). Revisiting the astrocyte-oligodendrocyte relationship in the adult CNS. Progress in Neurobiology, 82, 151–162.

    PubMed  CAS  Google Scholar 

  • Casaccia-Bonnefil, P., Carter, B. D., Dobrowsky, R. T., & Chao, M. V. (1996). Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature, 383, 716–719.

    PubMed  CAS  Google Scholar 

  • Casper, K. B., & McCarthy, K. D. (2006). GFAP-positive progenitor cells produce neurons and oligodendrocytes throughout the CNS. Molecular and Cellular Neurosciences, 31, 676–684.

    PubMed  CAS  Google Scholar 

  • Chan, J. R., Watkins, T. A., Cosgaya, J. M., et al. (2004). NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron, 43, 183–191.

    PubMed  CAS  Google Scholar 

  • Chandran, S., Compston, A., Jauniaux, E., Gilson, J., Blakemore, W., & Svendsen, C. (2004). Differential generation of oligodendrocytes from human and rodent embryonic spinal cord neural precursors. Glia, 47, 314–324.

    PubMed  Google Scholar 

  • Chang, A., Nishiyama, A., Peterson, J., Prineas, J., & Trapp, B. D. (2000). NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. Journal of Neuroscience, 20, 6404–6412.

    PubMed  CAS  Google Scholar 

  • Chao, M. V., & Hempstead, B. L. (1995). p75 and Trk: a two-receptor system. Trends in Neuroscience, 18, 321–326.

    CAS  Google Scholar 

  • Cohen, R. I., Marmur, R., Norton, W. T., Mehler, M. F., & Kessler, J. A. (1996). Nerve growth factor and neurotrophin-3 differentially regulate the proliferation and survival of developing rat brain oligodendrocytes. Journal of Neuroscience, 16, 6433–6442.

    PubMed  CAS  Google Scholar 

  • Coulson, E. J. (2006). Does the p75 neurotrophin receptor mediate A beta-induced toxicity in Alzheimer’s disease. Journal of Neurochemistry, 98, 654–660.

    PubMed  CAS  Google Scholar 

  • Coulson, E. J., Reid, K., Shipham, K. M., Morley, S., Kilpatrick, T. J., & Bartlett, P. F. (2004). The role of neurotransmission and the Copper domain in p75 neurotrophin receptor death signa- ling. Progress in Brain Research, 146, 41–62.

    PubMed  CAS  Google Scholar 

  • Dai, X., Qu, P., & Dreyfus, C. F. (2001). Neuronal signals regulate neurotrophin expression in oligodendrocytes of the basal forebrain. Glia, 34, 234–239.

    PubMed  CAS  Google Scholar 

  • Deadwyler, G. D., Pouly, S., Antel, J. P., & deVries, G. H. (2000). Neuregulins and ErbB receptor expression in adult human oligodendrocytes. Glia, 32, 304–312.

    PubMed  CAS  Google Scholar 

  • Dechant, G., & Barde, Y.-A. (2002). The neurotrophin receptor p75(NTR): novel functions and implications for diseasesofv the nervous system. Nature Neuroscience, 5, 1131–1136.

    PubMed  CAS  Google Scholar 

  • Domeniconi, M., Hempstead, B. L., & Chao, M. V. (2007). Pro-NGF secreted by astrocytes promotes motor neuron cell death. Molecular and Cellular Neurosciences, 34, 271–279.

    PubMed  CAS  Google Scholar 

  • Dowling, P., Ming, X., Raval, S., et al. (1999). Up-regulated p75(NTR) neurotrophin receptor on glial cells in MS plaques. Neurology, 53, 1676–1682.

    PubMed  CAS  Google Scholar 

  • Dreetz Gjerstad, M., Tandrup, T., Koltzenburg, M., & Jakobsen, J. (2002). Predominant neuronal B-cell loss in L5 DRG of p75 receptor deficient mice. Journal of Anatomy, 200, 81–87.

    PubMed  Google Scholar 

  • Du, Y. Z., & Dreyfus, C. F. (2002). Oligodendrocytes as providers of growth factors. Journal of Neuroscience Research, 68, 647–654.

    PubMed  CAS  Google Scholar 

  • Du, Y., Fischer, T. Z., Lee, L. N., Lercher, L. D., & Dreyfus, C. F. (2003). Regionally specific effects of BDNF on oligodendrocytes. Developmental Neuroscience, 25, 116–126.

    PubMed  CAS  Google Scholar 

  • Du, Y., Fischer, T. Z., Clinton-Luke, P., Lercher, L. D., & Dreyfus, C. F. (2006). Distinct effects of p75 in mediating actions of neurotrophins on basal forebrain oligodendrocytes. Molecular and Cellular Neurosciences, 31, 366–375.

    PubMed  CAS  Google Scholar 

  • Engel, J., Althaus, H. H., & Kristjansson, G. I. (1994). NGF increases [Ca2+]i in regenerating mature oligodendroglial cells. NeuroReport, 5, 397–400.

    PubMed  CAS  Google Scholar 

  • Engel, U., & Wolswijk, G. (1996). Oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells derived from adult spinal cord: In vitro characteristics and response to PDGF, bFGF and NT-3. Glia, 16, 16–26.

    PubMed  CAS  Google Scholar 

  • Espinosa de los Monteros, A., Zhang, M., & deVellis, J. (1993). O2A progenitor cells transplanted into neonatal rat brain develop into oligodendrocytes but not astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 90, 50–54.

    PubMed  CAS  Google Scholar 

  • Fahnestock, M., Michalski, B., Xu, B., & Coughlin, M. D. (2001). The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease. Molecular and Cellular Neurosciences, 18, 210–220.

    PubMed  CAS  Google Scholar 

  • Fahnestock, M., Yu, G., Michalski, B., et al. (2004a). The nerve growth factor precursor proNGF exhibits neurotrophic activity but is less active than mature nerve growth factor. Journal of Neurochemistry, 89, 581–592.

    PubMed  CAS  Google Scholar 

  • Fahnestock, M., Yu, G., & Coughlin, M. D. (2004b). ProNGF: a neurotrophic or an apoptotic molecule? Progress in Brain Research, 146, 101–110.

    PubMed  CAS  Google Scholar 

  • Farhadi, H. F., Mowla, S. J., Petrecca, K., Morris, S. J., Seidah, N. G., & Murphy, R. A. (2000). Neurotrophin-3 sorts to the constitutive secretory pathway of hippocampal neurons and is diverted to the regulated secretory pathway by coexpression with brain-derived neurotrophic factor. Journal of Neuroscience, 20, 4059–4068.

    PubMed  CAS  Google Scholar 

  • Fayard, B., Loeffler, S., Weis, J., Vögelin, E., & Krüttgen, A. (2005). The secreted brain-derived neurotrophic factor precursor pro-BDNF binds to TrkB and p75NTR but not to TrkA or TrkC. Journal of Neuroscience Research, 80, 18–28.

    PubMed  CAS  Google Scholar 

  • Fedoroff, S., & Vernadakis, A. (1986). Astrocytes, Vol.I-III. Orlando: Academic.

    Google Scholar 

  • Filipovic, R., & Zecevic, N. (2008). The effect of CXCL1 on human fetal oligodendrocyte progenitor cells. Glia, 56, 1–15.

    PubMed  Google Scholar 

  • Fuccillo, M., Joyner, A. L., & Fishell, G. (2006). Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development. Nature Reviews. Neuroscience, 7, 772–783.

    PubMed  CAS  Google Scholar 

  • Gao, L., & Miller, R. H. (2006). Specification of optic nerve oligodendrocyte precursors by retinal ganglion cell axons. Journal of Neuroscience, 26, 7619–7628.

    PubMed  CAS  Google Scholar 

  • Girard, C., Bemelmans, A.-P., Dufour, N., et al. (2005). Grafts of brain-derived neurotrophic factor and neurotrophin 3-transduced primate Schwann cells lead to functional recovery of the demyelinated mouse spinal cord. Journal of Neuroscience, 25, 7924–7933.

    PubMed  CAS  Google Scholar 

  • Grinspan, J. (2002). Cells and signaling in oligodendrocyte development. Journal of Neuropathology and Experimental Neurology, 61, 297–306.

    PubMed  CAS  Google Scholar 

  • Haroutunian, V., & Davis, K. L. (2007). Introduction to the special section: Myelin and oligo- dendrocyte abnormalities in schizophrenia. International Journal of Neuropsychopharmacology, 10, 499–502.

    PubMed  CAS  Google Scholar 

  • Hardy, R., & Reynolds, R. (1991). Proliferation and differentiation potential of rat forebrain oligodendroglial progenitors both in vitro and in vivo. Development, 111, 1061–1080.

    PubMed  CAS  Google Scholar 

  • Heinrich, M., Gorath, M., & Richter-Landsberg, C. (1999). Neurotrophin-3 (NT-3) modulated early differentiation of oligodendrocytes in rat brain corical cultures. Glia, 28, 244–255.

    PubMed  CAS  Google Scholar 

  • Hennigan, A., O’Callaghan, R. M., & Kelly, A. M. (2007). Neurotrophins and their receptors: roles in plasticity, neurodegeneration and neuroprotection. Biochemical Society Transactions, 35, 424–427.

    PubMed  CAS  Google Scholar 

  • Hermans-Borgmeyer, I., Hermey, G., Nykjaer, A., & Schaller, C. (1999). Expression of the 100- kDa neurotensin receptor sortilin during mouse embryonal development. Molecular Brain Research, 65, 216–219.

    PubMed  CAS  Google Scholar 

  • Heumann, R. (1994). Neurotrophin signalling. Current Opinion in Neurobiology, 4, 668–679.

    PubMed  CAS  Google Scholar 

  • Huang, C.-S., Zhou, J., Feng, A. K., et al. (1999). Nerve growth factor signalling in caveolae- like domains at the plasma membrane. Journal of Biological Chemistry, 274, 36707–36714.

    PubMed  CAS  Google Scholar 

  • Huang, E. J., & Reichardt, L. F. (2001). Neurotrophins: roles in neuronal development and function. Annual Review of Neuroscience, 24, 677–736.

    PubMed  CAS  Google Scholar 

  • Ibañez, C. F. (2002). Jekyll-Hyde neurotrophins: the story of proNGF. Trends in Neuroscience, 25, 284–286.

    Google Scholar 

  • Johe, K. K., Hazel, T. G., Müller, T., Dugich-Djordjevic, M. M., & McKay, R. D. G. (1996). Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes & Development, 10, 3129–3140.

    CAS  Google Scholar 

  • Jones, K. R., & Reichardt, L. F. (1990). Molecular cloning of a human gene that is a member of the nerve growth factor family. Proceedings of the National Academy of Sciences of the United States of America, 87, 8060–8064.

    PubMed  CAS  Google Scholar 

  • Kagawa, T., Wada, T., & Ikenaka, K. (2001). Regulation of oligodendrocyte development. Microscopy Research and Technique, 52, 740–745.

    PubMed  CAS  Google Scholar 

  • Kahn, M. A., Kumar, S., Liebe, D., Chang, R., Parada, L. F., & deVellis, J. (1999). Mice lacking NT-3, and its receptor TrkC, exhibit profound deficiencies in CNS glial cells. Glia, 26, 153–165.

    PubMed  CAS  Google Scholar 

  • Karadottir, R., & Attwell, D. (2007). Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience, 145, 1426–1438.

    PubMed  CAS  Google Scholar 

  • Kassmann, C. M., Lappe-Siefke, C., Baes, M., et al. (2007). Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nature Genetics, 39, 969–976.

    PubMed  CAS  Google Scholar 

  • Kavanaugh, B., Beesley, J., Itoh, T., Itoh, A., Grinspan, J., & Pleasure, D. (2000). Neurotrophin-3 (NT-3) diminishes susceptibility of the oligodendroglial lineage to AMPA glutamate receptor-mediated excitotoxicity. Journal of Neuroscience Research, 60, 725–732.

    PubMed  CAS  Google Scholar 

  • Kim, S. U., & Yong, V. W. (1990). Growth factors in human glial cells in culture. In G. Jeserich, H. H. Althaus, & T. V. Waehneldt (Eds.) Cellular and molecular biology of myelination, NATOASI Series H Vol.43 (pp. 255–279). Berlin: Springer.

    Google Scholar 

  • Klopfleisch, S. (2007). Inhibition der oligodendrogliären Cholesterinsynthese via Simvastatin: Negative Folgen für eine Remyelinisation? PhD thesis, University of Osnabrueck, Germany

  • Krause, S., Schindowski, K., Zechel, S., & von Bohlen, & Halbach, O. (2007). Expression of trkB and trkC receptors and their ligands brain-derived neurotrophic factor and neurotrophin-3 in the murine amygdala. Journal of Neuroscience Research, 86, 411–421

  • Krenz, N., & Weaver, L. C. (2000). Nerve growth factor in glia and inflammatory cells of the injured rat spinal cord. Journal of Neurochemistry, 74, 730–739.

    PubMed  CAS  Google Scholar 

  • Krüttgen, A., Möller, J. C., Heymach, J. V., & Shooter, E. M. (1998). Neurotrophins induce release of neurotrophins by the regulated secretory pathway. Proceedings of the National Academy of Sciences of the United States of America, 95, 9614–9619.

    PubMed  Google Scholar 

  • Kumar, S., & DeVellis, J. (1996). Neurotrophin activates signal transduction in oligodendroglial cells: expression of functional TrkC receptor isoforms. Journal of Neuroscience Research, 44, 490–498.

    PubMed  CAS  Google Scholar 

  • Kumar, S., Pena, L. A., & de Vellis, J. (1993). CNS glial cells express neurotrophin receptors whose levels are regulated by NGF. Molecular Brain Research, 7, 163–168.

    Google Scholar 

  • Kumar, S., Kahn, M. A., Dirk, L., & deVellis, J. (1998). NT-3 mediated TrkC receptor activation promotes proliferation and cell survival of rodent progenitor oligodendrocyte cells in vitro and in vivo. Journal of Neuroscience Research, 54, 754–765.

    PubMed  CAS  Google Scholar 

  • Kumar, A., Sinha, R. A., Tiwari, M., et al. (2006). Increased pro-nerve growth factor and p75 neurotrophin receptor levels in developing hypothyroid rat cerebral cortex are associated with enhanced apoptosis. Endocrinology, 147, 4893–4903.

    PubMed  CAS  Google Scholar 

  • Kurzchalia, T. V., & Parton, R. G. (1999). Membrane microdomains and caveolae. Current Opinion in Cell Biology, 11, 424–431.

    PubMed  CAS  Google Scholar 

  • Lachyankar, M. B., Condon, P. J., Quesenberry, P. J., Litofsky, N. S., Recht, L. D., & Ross, A. H. (1997). Embryonic precursor cells that express Trk receptors: Induction of different cell fates by NGF, BDNF, NT-3, and CNTF. Experimental Neurology, 144, 350–360.

    PubMed  CAS  Google Scholar 

  • Lad, S. P., & Neet, K. E. (2003). Activation of the mitogen-activated protein kinase pathway through p75NTR: a common mechanism for the neurotrophin family. Journal of Neuroscience Research, 73, 614–626.

    PubMed  CAS  Google Scholar 

  • Ladiwala, U., Lachance, C., Simoneau, S. J. J., Bhakar, A., Barker, P. A., & Antel, J. P. (1998). p75 neurotrophin receptor expression on adult human oligodendrocytes: signaling without cell death in response to NGF. Journal of Neuroscience, 18, 1297–1304.

    PubMed  CAS  Google Scholar 

  • Lappe-Siefke, C., Goebbels, S., Gravel, M., et al. (2003). Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nature Genetics, 33, 366–374.

    PubMed  CAS  Google Scholar 

  • Lee, H., Volonte, D., Galbiati, F., et al. (2000). Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Molecular Endocrinology, 14, 1750–1775.

    PubMed  CAS  Google Scholar 

  • Lee, R., Kermani, P., Teng, K. K., & Hempstead, B. L. (2001). Regulation of cell survival by secreted proneurotrophins. Science, 294, 1945–1948.

    PubMed  CAS  Google Scholar 

  • Lee, X., Yang, Z. S., Shao, Z. H., et al. (2007). NGF regulates the expression of axonal LINGO-1 to inhibit oligodendrocyte differentiation and myelination. Journal of Neuroscience, 27, 220–225.

    PubMed  CAS  Google Scholar 

  • Lei, L., & Parada, L. F. (2007). Transcriptional regulation of Trk family neurotrophin receptors. Cellular and Molecular Life Sciences, 64, 522–532.

    PubMed  CAS  Google Scholar 

  • Lessmann, V., Gottmann, K., & Malcangio, M. (2003). Neurotrophin secretion: current facts and future prospects. Progress in Neurobiology, 69, 341–374.

    PubMed  CAS  Google Scholar 

  • Lorigados, L., Pavon, N., Serrano, T., Robinson, M. A., Fernandez, C. I., & Alvarez, P. (2001). Cambios en los niveles de factor de crecimiento nervioso con el envejecimiento y el tratamiento neurotrofico en primates no humanos. Revista de Neurologia, 33, 417–421.

    PubMed  CAS  Google Scholar 

  • Lu, B., Pang, P. T., & Woo, N. H. (2005). The Yin and Yang of neurotrophin action. Nature Reviews. Neuroscience, 6, 603–614.

    PubMed  CAS  Google Scholar 

  • Lugaro, E. (1907). Sulle funzioni della neuroglia. Rivista di Patologia Nervosa e Mentale, 12, 225–233.

    Google Scholar 

  • McTigue, D. M., Horner, P. J., Stokes, B. T., & Gage, F. H. (1998). Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. Journal of Neuroscience, 18, 5354–5365.

    PubMed  CAS  Google Scholar 

  • Mi, S., Lee, X., Shao, Z., et al. (2004). LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nature Neuroscience, 7, 221–228.

    PubMed  CAS  Google Scholar 

  • Micera, A., Lambiase, A., Rama, P., & Aloe, L. (1999). Altered nerve growth factor level in the optic nerve of patients affected by multiple sclerosis. Multiple Sclerosis, 5, 389–394.

    PubMed  CAS  Google Scholar 

  • Miron, V. E., Rajasekharan, S., Jarjour, A. A., Zamvil, S. S., Kennedy, T. E., & Antel, J. P. (2007). Simvastatin regulates oligodendroglial process dynamis and survival. Glia, 55, 130–143.

    PubMed  Google Scholar 

  • Mowla, S. J., Pareek, S., Farhadi, H. F., et al. (1999). Differential sorting of nerve growth factor and brain-derived neurotrophic factor in hippocampal neurons. Journal of Neuroscience, 19, 2069–2080.

    PubMed  CAS  Google Scholar 

  • Mowla, S. J., Farhadi, H. F., Pareek, S., et al. (2001). Biosynthesis and post-translational processing of the precursor to brain-derived neurotrophic factor. Journal of Biological Chemistry, 276, 12660–12666.

    PubMed  CAS  Google Scholar 

  • Nakamura, K., Namekata, K., Harada, C., & Harada, T. (2007). Intracellular sortilin expression pattern regulates proNGF-induced maturally occurring cell death during development. Cell Death and Differentiation, 14, 1552–1554.

    PubMed  CAS  Google Scholar 

  • Nakayama, K. (1997). Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochemical Journal, 327, 625–635.

    PubMed  CAS  Google Scholar 

  • Nedergaard, M., Ransom, B., & Goldman, S. A. (2003). New roles for astrocytes: redefining the functional architecture of the brain. Trends Neuroscience, 26, 523–530.

    CAS  Google Scholar 

  • Nicolay, D. J., Doucette, J. R., & Nazarali, A. J. (2007). Transcriptional control of oligodendrogenesis. Glia, 55, 1287–1299.

    PubMed  Google Scholar 

  • Nistor, G. I., Totoiu, M. O., Haque, N., Carpenter, M. K., & Keirstead, H. S. (2005). Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia, 49, 385–396.

    PubMed  Google Scholar 

  • Noble, M. (2004). The possible role of myelin destruction as a precipitating event in Alzheimer’s disease. Neurobiology of Aging, 25, 25–31.

    PubMed  CAS  Google Scholar 

  • Notterpek, L. (2003). Neurotrophins in myelination: a new role for a puzzling receptor. Trends Neuroscience, 26, 232–234.

    CAS  Google Scholar 

  • Nykjaer, A., Lee, R., Teng, K. K., et al. (2004). Sortilin is essential for proNGF-induced neuronal cell death. Nature, 427, 843–848.

    PubMed  CAS  Google Scholar 

  • Nykjaer, A., Willnow, T. E., & Petersen, C. M. (2005). p75NTR-live or let die. Current Opinion in Neurobiology, 15, 49–57.

    PubMed  CAS  Google Scholar 

  • Paratcha, G., & Ibanez, C. F. (2002). Lipid rafts and the control of neurotrophic factor signaling in the nervous system: variation on a theme. Current Opinion in Neurobiology, 12, 542–549.

    PubMed  CAS  Google Scholar 

  • Pawson, T., Olivier, P., Rozakis-Adcock, M., McGlade, J., & Henkemeyer, M. (1993). Proteins with SH2 and SH3 domains couple receptor tyrosine kinases to intracellular signalling pathways. Philosophical Transactions of the Royal Society of London, 340, 279–285.

    PubMed  CAS  Google Scholar 

  • Pearson, G., Robinson, F., Gibson, T. B., et al. (2001). Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocrine Reviews, 22, 153–183.

    PubMed  CAS  Google Scholar 

  • Peiro, S., Comella, J. X., Enrich, C., Martin-Zanca, D., & Rocamora, N. (2000). PC12 cells have caveolae that contain TrkA. Journal of Biological Chemistry, 275, 37846–37852.

    PubMed  CAS  Google Scholar 

  • Peng, S., Wuu, J., Mufson, E. J., & Fahnestock, M. (2005). Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre- clinical stages of Alzheimer’s disease. Journal of Neurochemistry, 93, 1412–1421.

    PubMed  CAS  Google Scholar 

  • Pfeiffer, S. E., Warrington, A. E., & Bansal, R. (1993). The oligodendrocyte and its many cellular processes. Trends in Cell Biology, 3, 191–197.

    PubMed  CAS  Google Scholar 

  • Pierce, S. K. (2004). To cluster or not to cluster: FRETting over rafts. Nature Cell Biology, 6, 180–181.

    PubMed  CAS  Google Scholar 

  • Rabizadeh, S., Oh, J., Zhong, L. Z., et al. (1993). Induction by apoptosis by low-affinity NGF receptor. Science, 243, 1450–1455.

    Google Scholar 

  • Reichardt, L. F. (2006). Neurotrophin-regulated signalling pathways. Philosophical Transactions of the Royal Society of London, 361, 1545–1564.

    PubMed  CAS  Google Scholar 

  • Rice, C., & Scolding, N. (2007). Strategies for achieving and monitoring myelin repair. Journal of Neurology, 254, 275–283.

    PubMed  CAS  Google Scholar 

  • Richardson, W. D., Kessaris, N., & Pringle, N. (2006). Oligodendrocyte wars. Nature Reviews. Neuroscience, 7, 11–18.

    PubMed  CAS  Google Scholar 

  • Richter-Landsberg, C., & Bauer, N. G. (2004). Tau-inclusion body formation in oligodendroglia: the role of stress proteins and proteasome inhibition. International Journal of Developmental Neuroscience, 22, 443–451.

    PubMed  CAS  Google Scholar 

  • Rifkin, J. T., Todd, V. J., Anderson, L. W., & Lefcort, B. (2000). Dynamic expression of neurotrophin receptors during sensory neuron genesis and differentiation. Developmental Biologies, 227, 465–480.

    CAS  Google Scholar 

  • Robinson, S., & Miller, R. (1996). Environmental enhancement of growth factor-mediated oligodendrocyte precursor proliferation. Molecular and Cellular Neurosciences, 8, 38–52.

    PubMed  CAS  Google Scholar 

  • Rosenberg, S. S., Ng, B. K., & Chan, J. R. (2006). The quest for remyelination: A new role for neurotrophins and their receptors. Brain Pathology, 16, 288–294.

    PubMed  CAS  Google Scholar 

  • Roux, P. P., & Barker, P. A. (2002). Neurotrophin signalling through the p75 neurotrophin receptor. Progress in Neurobiology, 67, 203–233.

    PubMed  CAS  Google Scholar 

  • Satoh, J., & Kim, S. U. (1994). Proliferation and differentiation of fetal human oligodendrocytes in culture. Journal of Neuroscience Research, 39, 260–272.

    PubMed  CAS  Google Scholar 

  • Scarisbrick, I. A., Asakura, K., & Rodriguez, M. (2000). Neurotrophin-4/5 promotes proliferation of oligodendrocyte-type-2 astrocytes (O-2A). Developmental Brain Research, 123, 87–90.

    PubMed  CAS  Google Scholar 

  • Schmitz, M. (2006). Expression und Funktion von Caveolin bei Gliazellen, insbesondere Oligodendrozyten. PhD thesis, University of Goettingen, Germany.

  • Schor, N. F. (2005). The p75 neurotrophin receptor in human development and disease. Progress in Neurobiology, 77, 201–214.

    PubMed  CAS  Google Scholar 

  • Schuldiner, M., Yanuka, O., Itskovitz-Eldor, J., Melton, D. A., & Benvenisty, N. (2000). Effects of eight growth factors on the differentiation of cells derived from human emryonicstem cells. Proceedings of the National Academy of Sciences of the United States of America, 97, 11307–11312.

    PubMed  CAS  Google Scholar 

  • Schwartz, P. H., Nethercott, H., Kirov, I. I., Ziaeian, B., Young, M. J., & Klassen, H. (2005). Expression of neurodevelopmental markers by cultured porcine neural precursor cells. Stem Cells, 23, 1286–1294.

    PubMed  Google Scholar 

  • Scolding, N. J., Rayner, P. J., Sussman, J., Shaw, C., & Compston, D. A. S. (1995). A proliferative adult human oligodendrocyte progenitor. NeuroReport, 6, 441–445.

    PubMed  CAS  Google Scholar 

  • Seidah, N. G., Benjannet, S., Pareek, S., et al. (1996). Cellular processing of the nerve growth factor precursor by the mammalian pro-protein convertase. Biochemical Journal, 314, 951–960.

    PubMed  CAS  Google Scholar 

  • Seidah, N. G., Mowla, S. J., Hamelin, J., et al. (1999). Mammalian subtilisin/kexin isozyme SKI- 1: a widely expressed proprotein convertases with a unique cleavage specificity and cellular localization. Proceedings of the National Academy of Sciences of the United States of America, 96, 1321–1326.

    PubMed  CAS  Google Scholar 

  • Shalizi, A., Lehtinen, M., Gaudilliere, B., et al. (2003). Characterization of a neurotrophin signalling mechanism that mediates neuron survival in a temporally specific pattern. Journal of Neuroscience, 23, 7326–7336.

    PubMed  CAS  Google Scholar 

  • Simons, K., & van Meer, G. (1988). Lipid sorting in epithelial cells. Biochemistry, 27, 6197–6202.

    PubMed  CAS  Google Scholar 

  • Simons, K., & Toomre, D. (2000). Lipid rafts and signal transduction. Nature Reviews. Molecular Cell Biology, 1, 31–39.

    PubMed  CAS  Google Scholar 

  • Sofroniew, M. V., Howe, C. L., & Mobley, W. C. (2001). Nerve growth factor signalling, neuroprotection, and neural repair. Annual Review of Neuroscience, 24, 1217–1281.

    PubMed  CAS  Google Scholar 

  • Soilu-Hänninen, M., Epa, R., Shipham, K., Butzkueven, H., Bucci, T., Barrett, G., et al. (2000). Treatment of experimental autoimmune encephalomyelitis with antisense oligonucleotides against the low affinity neurotrophin receptor. Journal of Neuroscience Research, 59, 712–721.

    PubMed  Google Scholar 

  • Soliven, B. (2001). Calcium signalling in cells of oligodendroglial lineage. Microscopy Research and Technique, 52, 672–679.

    PubMed  CAS  Google Scholar 

  • Song, S. K., Li, S., Okamoto, T., Quilliam, L. A., Sargiacomo, L. A., & Lisanti, M. P. (1996). Co- purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. Journal of Biological Chemistry, 271, 9690–9697.

    PubMed  CAS  Google Scholar 

  • Song, L., Ge, S. J., & Pachter, J. S. (2007). Caveolin-1 regulates expression of junction-associated proteins in brain microvascular endothelial cells. Blood, 109, 1515–1523.

    PubMed  CAS  Google Scholar 

  • Srinivasan, B., Roque, C. H., Hempstead, B. L., Al-Ubaidi, M. R., & Roque, R. S. (2004). Microglia- derived pronerve growth factor promotes photoreceptor cell death via p75 neurotrophin receptor. Journal of Biological Chemistry, 279, 41839–41845.

    PubMed  CAS  Google Scholar 

  • Stariha, R. L., & Kim, S. U. (2001). Protein kinase C and mitogen-activated protein kinase signalling in oligodendrocytes. Microscopy Research and Technique, 52, 680–688.

    PubMed  CAS  Google Scholar 

  • Starkey, G. D., Petratos, S., Shipham, K. A., et al. (2001). Neurotrophin receptor expression and responsiveness by postnatal cerebral oligodendroglia. NeuroReport, 12, 4081–4086.

    PubMed  CAS  Google Scholar 

  • Takano, R., Hisahara, S., Namikawa, K., Kijama, H., Okano, H., & Miura, M. (2000). Nerve growth factor protects oligodendrocytes from TNF-a-induced injury through Akt-mediated signaling mechanisms. Journal of Biological Chemistry, 275, 16360–16365.

    PubMed  CAS  Google Scholar 

  • Taylor, S., Srinivasan, B., Wordinger, R. J., & Roque, R. S. (2003). Glutamate stimulates neurotrophin expression in cultured Müller cells. Molecular Brain Research, 111, 189–197.

    PubMed  CAS  Google Scholar 

  • Teng, K. K., & Hempstead, B. L. (2004). Neurotrophins and their receptors: signaling trios in complex biological systems. Cellular and Molecular Life Sciences, 61, 35–48.

    PubMed  CAS  Google Scholar 

  • Thomas, G. (2002). Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nature Reviews. Molecular Cell Biology, 3, 753–766.

    PubMed  CAS  Google Scholar 

  • Tominaga, M., Honda, S., Okada, A., Ikeda, A., Kinoshita, S., & Tomooka, Y. (2005). A bipotent neural progenitor cell line cloned from a cerebellum of an adult p53-deficient mouse generates both neurons and oligodendrocytes. European Journal of Neuroscience, 21, 2903–2911.

    PubMed  Google Scholar 

  • Tsuruda, A., Suzuki, S., Maekawa, T., & Oka, S. (2004). Constitutively active Src facilitates NGF- induced phosphorylation of TrkA and causes enhancement of the MAPK signalling in SK-N- MC cells. FEBS Letters, 560, 215–220.

    PubMed  CAS  Google Scholar 

  • Twiss, J. L., Chang, J. H., & Schanen, N. C. (2006). Pathophysiological mechanisms for actions of the neurotrophins. Brain Pathology, 16, 320–332.

    PubMed  CAS  Google Scholar 

  • Valdo, P., Stegagno, C., Mazzucco, S., et al. (2002). Enhanced expression of NGF receptors in multiple scleosis lesions. Journal of Neuropathology and Experimental Neurology, 61, 91–98.

    PubMed  CAS  Google Scholar 

  • van der Geer, P., & Pawson, T. (1995). The PZB domain: a new protein module implicated in signal transduction. Trends in Biochemical Sciences, 20, 277–280.

    PubMed  Google Scholar 

  • Villoslada, P., & Genain, C. P. (2004). Role of nerve growth factor and other trophic factors in brain inflammation. Progress in Brain Research, 146, 403–414).

    PubMed  CAS  Google Scholar 

  • Weston, C. R., & Davis, R. J. (2007). The JNK signal transduction pathway. Current Opinion in Cell Biology, 19, 142–149.

    PubMed  CAS  Google Scholar 

  • Wilkins, A., Majed, H., Layfield, R., Compston, A., & Chandran, S. (2003). Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: A novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. Journal of Neuroscience, 23, 4967–4974.

    PubMed  CAS  Google Scholar 

  • Willerth, S. M., Faxel, T. E., Gottlieb, D. L., & Sakiyama-Elbert, S. (2007). The effects of soluble growth factors on embryonic stem cell differentiation inside of fibrin scaffolds. Stem Cells, 25, 2235–2244.

    PubMed  CAS  Google Scholar 

  • Williams, B. P., Read, J., & Price, J. (1991). The generation of neurons and oligodendrocytes from a common precursor cell. Neuron, 7, 685–693.

    PubMed  CAS  Google Scholar 

  • Wilson, H. C., Onischke, C., & Raine, C. S. (2003). Human oligodendrocyte precursor cells in vitro: Phenotypic analysis and differential response to growth factors. Glia, 44, 153–165.

    PubMed  Google Scholar 

  • Xin, M., Yue, T., Ma, Z., Wu, F.-F., Gow, A., & Lu, Q. R. (2005). Myelinogenesis and axonal recognition by oligodendrocytes in brain are uncoupled in Olig1-null mice. Journal of Neuroscience, 25, 1354–1365.

    PubMed  CAS  Google Scholar 

  • Yamashita, T., & Tohyama, M. (2003). The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI. Nature Neuroscience, 6, 461–467.

    PubMed  CAS  Google Scholar 

  • Yoon, S. O., Casaccia-Bonnefil, P., Carter, B. D., & Chao, M. V. (1998). Competitive signalling between TrkA and p75 nerve growth factor receptors determines cell survival. Journal of Neuroscience, 18, 3273–3281.

    PubMed  CAS  Google Scholar 

  • Yune, T. Y., Lee, J. Y., Jung, G. Y., et al. (2007). Minocycline alleviates death of oligodendrocytes by inhibiting pro-nerve growth factor production in microglia after spinal cord injury. Journal of Neuroscience, 27, 7751–7761.

    PubMed  CAS  Google Scholar 

  • Zampieri, N., & Chao, M. V. (2006). Mechanisms of neurotrophin receptor signalling. Biochemical Society Transactions, 34, 607–611.

    PubMed  CAS  Google Scholar 

  • Zhang, Y. W., Denham, J., & Thies, R. S. (2006). Oligodendrocyte progenitor cells derived from human embryonic stem cells express neurotrophic factors. Stem Cells Develop., 15, 943–952.

    CAS  Google Scholar 

  • Zhang, Y.-Z., Moheban, D. B., Conway, B. R., Bhattacharyya, A., & Segal, R. A. (2000). Cell surface Trk receptors mediate NGF-induced survival while internalized receptors regulate NGF- induced differentiation. Journal of Neuroscience, 20, 5671–5678.

    PubMed  CAS  Google Scholar 

  • Zhang, S. C., Wernig, M., Duncan, I. D., Brüstle, O., & Thomson, J. A. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnology, 19, 1129–1133.

    PubMed  CAS  Google Scholar 

  • Zhou, Q., & Anderson, D. J. (2002). The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell, 109, 61–73.

    PubMed  CAS  Google Scholar 

  • Zhou, X.-F., Song, X.-Y., Zhong, J.-H., et al. (2004). Distribution and localization of pro-brain derived neurotrophic factor-like immunoreactivity in the peripheral and central nervous system of the adult rat. Journal of Neurochemistry, 91, 704–713.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans H. Althaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Althaus, H.H., Klöppner, S., Klopfleisch, S. et al. Oligodendroglial Cells and Neurotrophins: A Polyphonic Cantata in Major and Minor. J Mol Neurosci 35, 65–79 (2008). https://doi.org/10.1007/s12031-008-9053-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9053-y

Keywords

Navigation