Skip to main content

Advertisement

Log in

PACAP-Mediated ATP Release from Rat Urothelium and Regulation of PACAP/VIP and Receptor mRNA in Micturition Pathways after Cyclophosphamide (CYP)-Induced Cystitis

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Pituitary adenylate cyclase-activating peptide (PACAP) peptides are expressed in micturition pathways, and PACAP expression is regulated by urinary bladder inflammation. Previous physiological studies have demonstrated roles for PACAP27 and PACAP38 in detrusor smooth muscle (DSM) contraction and a PAC1 receptor antagonist reduced cyclophosphamide (CYP)-induced bladder hyperreflexia. To gain insight into PACAP signaling in micturition and regulation with cystitis, receptor characterization by real-time quantitative polymerase chain reaction and physiological assays were performed. PACAP receptors were identified in tissues of rat micturition pathway, including DSM, urothelium (U), and dorsal root ganglia (DRG) after acute (4 h), intermediate (48 h) or chronic (8 days) CYP-induced cystitis. PAC1 messenger RNA expression significantly (p ≤ 0.05) increased in U and DSM after 48 h and chronic CYP-induced cystitis after an initial decrease at 4 h. VPAC1 and VPAC2 transcripts increased in U and DSM after acute and intermediate CYP-induced cystitis followed by a decrease in VPAC2 expression with chronic cystitis. Application of PACAP27 (100 nM) to cultured urothelial cells evoked adenosine triphosphate (ATP) release that was blocked by the PAC1 specific antagonist, M65 (1 μM). PACAP38 (100 nM) also evoked ATP release from cultured urothelial cells, but ATP release was less than that observed with PACAP27. PACAP transcripts were increased in the U with intermediate and chronic cystitis, whereas vasoactive intestinal polypeptide (VIP) expression in both tissues was very low and showed no regulation with cystitis. Regulation of PACAP, galanin, and substance P transcripts expression was observed in lumbosacral DRG, but no regulation for VIP was observed. The current data demonstrate PACAP and PAC1 regulation in micturition pathways with inflammation and PACAP-mediated ATP release from urothelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Arimura, A. (1992). Pituitary adenylate cyclase activating polypeptide (PACAP): discovery and current status of research. Regulatory Peptide, 37(3), 287–303.

    CAS  Google Scholar 

  • Arimura, A. (1998). Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. Japanese Journal of Physiology, 48(5), 301–331.

    Article  PubMed  CAS  Google Scholar 

  • Arimura, A., Somogyvari-Vigh, A., Miyata, A., Mizuno, K., Coy, D. H., & Kitada, C. (1991). Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology, 129(5), 2787–2789.

    PubMed  CAS  Google Scholar 

  • Birder, L. A. (2006). Urinary bladder urothelium: molecular sensors of chemical/thermal/mechanical stimuli. Vascular Pharmacology, 45(4), 221–226.

    Article  PubMed  CAS  Google Scholar 

  • Birder, L. A., Barrick, S. R., Roppolo, J. R., et al. (2003). Feline interstitial cystitis results in mechanical hypersensitivity and altered ATP release from bladder urothelium. American Journal of Physiology– Renal Physiology, 285(3), F423–F429.

    PubMed  CAS  Google Scholar 

  • Birder, L. A., Ruan, H. Z., Chopra, B., et al. (2004). Alterations in P2X and P2Y purinergic receptor expression in urinary bladder from normal cats and cats with interstitial cystitis. American Journal of Physiology– Renal Physiology, 287(5), F1084–F1091.

    Article  PubMed  CAS  Google Scholar 

  • Bodin, P., & Burnstock, G. (1998). Increased release of ATP from endothelial cells during acute inflammation. Inflammation Research, 47(8), 351–354.

    Article  PubMed  CAS  Google Scholar 

  • Bodin, P., & Burnstock, G. (2001). Evidence that release of adenosine triphosphate from endothelial cells during increased shear stress is vesicular. Journal of Cardiovascular Pharmacology, 38(6), 900–908.

    Article  PubMed  CAS  Google Scholar 

  • Braas, K. M., & May, V. (1996). Pituitary adenylate cyclase-activating polypeptides, PACAP-38 and PACAP-27, regulation of sympathetic neuron catecholamine, and neuropeptide Y expression through activation of type I PACAP/VIP receptor isoforms. Annals of the New York Academy of Sciences, 805, 204–216 (discussion 217–208).

    PubMed  CAS  Google Scholar 

  • Braas, K. M., & May, V. (1999). Pituitary adenylate cyclase-activating polypeptides directly stimulate sympathetic neuron neuropeptide Y release through PAC(1) receptor isoform activation of specific intracellular signaling pathways. Journal of Biological Chemistry, 274(39), 27702–27710.

    Article  PubMed  CAS  Google Scholar 

  • Braas, K. M., May, V., Harakall, S. A., Hardwick, J. C., & Parsons, R. L. (1998). Pituitary adenylate cyclase-activating polypeptide expression and modulation of neuronal excitability in guinea pig cardiac ganglia. Journal of Neuroscience, 18(23), 9766–9779.

    PubMed  CAS  Google Scholar 

  • Braas, K. M., May, V., Zvara, P., et al. (2006). Role for pituitary adenylate cyclase activating polypeptide in cystitis-induced plasticity of micturition reflexes. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 290(4), R951–R962.

    PubMed  CAS  Google Scholar 

  • Brown, C., Burnstock, G., & Cocks, T. (1979). Effects of adenosine 5'-triphosphate (ATP) and beta-gamma-methylene ATP on the rat urinary bladder. British Journal of Pharmacology, 65(1), 97–102.

    PubMed  CAS  Google Scholar 

  • Burnstock, G. (2000). P2X receptors in sensory neurones. British Journal of Anaesthesia, 84(4), 476–488.

    PubMed  CAS  Google Scholar 

  • Chopra, B., Barrick, S. R., Meyers, S., et al. (2005). Expression and function of bradykinin B1 and B2 receptors in normal and inflamed rat urinary bladder urothelium. Journal of Physiology, 562(Pt 3), 859–871.

    PubMed  CAS  Google Scholar 

  • Cockayne, D. A., Hamilton, S. G., Zhu, Q. M., et al. (2000). Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X(3)-deficient mice. Nature, 407(6807), 1011–1015.

    Article  PubMed  CAS  Google Scholar 

  • Corrow, K. A., & Vizzard, M. A. (2007). Phosphorylation of extracellular signal-regulated kinases in urinary bladder in rats with cyclophosphamide-induced cystitis. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 293(1), R125–134.

    PubMed  CAS  Google Scholar 

  • Donaldson, L. F., Harmar, A. J., McQueen, D. S., & Seckl, J. R. (1992). Increased expression of preprotachykinin, calcitonin gene-related peptide, but not vasoactive intestinal peptide messenger RNA in dorsal root ganglia during the development of adjuvant monoarthritis in the rat. Brain Res. Mol. Brain Res., 16(1–2), 143–149.

    Article  PubMed  CAS  Google Scholar 

  • Donovan, M. K., Winternitz, S. R., & Wyss, J. M. (1983). An analysis of the sensory innervation of the urinary system of the rat. Brain Research Bulletin, 11, 321–324.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, D. R. (1999). Interstitial cystitis: Update on etiologies and therapeutic options. Journal of Women's Health & Gender-based Medicine, 8(6), 745–758.

    Article  CAS  Google Scholar 

  • Erickson, D. R., & Davies, M. F. (1998). Interstitial cystitis. International Urogynecology Journal, 9, 174–183.

    Article  PubMed  CAS  Google Scholar 

  • Fahrenkrug, J., & Hannibal, J. (1998). Pituitary adenylate cyclase activating polypeptide immunoreactivity in capsaicin-sensitive nerve fibres supplying the rat urinary tract. Neuroscience, 83(4), 1261–1272.

    Article  PubMed  CAS  Google Scholar 

  • Fizanne, L., Sigaudo-Roussel, D., Saumet, J. L., & Fromy, B. (2004). Evidence for the involvement of VPAC1 and VPAC2 receptors in pressure-induced vasodilatation in rodents. Journal of Physiology, 554(Pt 2), 519–528.

    PubMed  CAS  Google Scholar 

  • Fox-Threlkeld, J. A., McDonald, T. J., Woskowska, Z., Iesaki, K., & Daniel, E. E. (1999). Pituitary adenylate cyclase-activating peptide as a neurotransmitter in the canine ileal circular muscle. The Journal of Pharmacology and Experimental Therapeutics, 290(1), 66–75.

    PubMed  CAS  Google Scholar 

  • Girard, B. A., Lelievre, V., Braas, K. M., et al. (2006). Noncompensation in peptide/receptor gene expression and distinct behavioral phenotypes in VIP- and PACAP-deficient mice. Journal of Neurochemistry, 99(2), 499–513.

    Article  PubMed  CAS  Google Scholar 

  • Girard, B. M., May, V., Bora, S. H., Fina, F., & Braas, K. M. (2002). Regulation of neurotrophic peptide expression in sympathetic neurons: quantitative analysis using radioimmunoassay and real-time quantitative polymerase chain reaction. Regulatory Peptide, 109(1–3), 89–101.

    Article  CAS  Google Scholar 

  • Herrera, G. M., Braas, K. M., May, V., & Vizzard, M. A. (2006). PACAP enhances mouse urinary bladder contractility and is upregulated in micturition reflex pathways after cystitis. Annals of the New York Academy of Sciences, 1070, 330–336.

    Article  PubMed  CAS  Google Scholar 

  • Hu, V. Y., Malley, S., Dattilio, A., Folsom, J. B., Zvara, P., & Vizzard, M. A. (2003). COX-2 and prostanoid expression in micturition pathways after cyclophosphamide-induced cystitis in the rat. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 284(2), R574–R585.

    PubMed  CAS  Google Scholar 

  • Hu, V. Y., Zvara, P., Dattilio, A., et al. (2005). Decrease in bladder overactivity with REN1820 in rats with cyclophosphamide induced cystitis. Journal of Urology, 173(3), 1016–1021.

    Article  PubMed  Google Scholar 

  • Igawa, Y., Persson, K., Andersson, K. E., Uvelius, B., & Mattiasson, A. (1993). Facilitatory effect of vasoactive intestinal polypeptide on spinal and peripheral micturition reflex pathways in conscious rats with and without detrusor instability. Journal of Urology, 149(4), 884–889.

    PubMed  CAS  Google Scholar 

  • Jongsma, W. H., Danielsen, N., Johnston, J. M., Gratto, K. A., Karchewski, L. A., & Verge, V. M. K. (2001). Exogenous NT-3 and NGF differentially modulate PACAP expression in adult sensory neurons, suggesting distinct roles in injury and inflammation. European Journal of Neuroscience, 14, 267–282.

    Article  Google Scholar 

  • Jongsma, W. H., Pettersson, L. M., Verge, V. M., & Danielsen, N. (2003). Effect of anti-nerve growth factor treatment on pituitary adenylate cyclase activating polypeptide expression in adult sensory neurons exposed to adjuvant induced inflammation. Neuroscience, 120(2), 325–331.

    Article  CAS  Google Scholar 

  • Keast, J. R., & de Groat, W. C. (1992). Segmental distribution and peptide content of primary afferent neurons innervating the urogenital organs and colon of male rats. Journal of Comparative Neurology, 319, 615–623.

    Article  PubMed  CAS  Google Scholar 

  • King, J. A., Huddart, H., & Staff, W. G. (1997). Purinergic modulation of rat urinary bladder detrusor smooth muscle. General Pharmacology, 29(4), 597–604.

    Article  PubMed  CAS  Google Scholar 

  • Klinger, M. B., Girard, B., & Vizzard, M. A. (2008). p75(NTR) expression in rat urinary bladder sensory neurons and spinal cord with cyclophosphamide-induced cystitis. Journal of Comparative Neurology, 507(3), 1379–1392.

    Article  PubMed  CAS  Google Scholar 

  • LaBerge, J., Malley, S. E., Zvarova, K., & Vizzard, M. A. (2006). Expression of corticotropin-releasing factor and CRF receptors in micturition pathways after cyclophosphamide-induced cystitis. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 291(3), R692–R703s.

    PubMed  CAS  Google Scholar 

  • Linden, A., Cardell, L. O., Yoshihara, S., & Nadel, J. A. (1999). Bronchodilation by pituitary adenylate cyclase-activating peptide and related peptides. European Respiratory Journal, 14(2), 443–451.

    Article  PubMed  CAS  Google Scholar 

  • Lu, C. L., Pasricha, P. J., Hsieh, J. C., et al. (2005). Changes of the neuropeptides content and gene expression in spinal cord and dorsal root ganglion after noxious colorectal distension. Regulatory Peptide, 131(1–3), 66–73.

    Article  CAS  Google Scholar 

  • Maggi, C. A., Lecci, A., Santicioli, P., Del Bianco, E., & Giuliani, S. (1992). Cyclophosphamide cystitis in rats: involvement of capsaicin-sensitive primary afferents. Journal of The Autonomic Nervous System, 38(3), 201–208.

    Article  PubMed  CAS  Google Scholar 

  • Maggi, C. A., Lecci, A., Santicioli, P., Del Bianco, E., & Giuliani, S. (1993). Cyclophosphamide-induced cystitis in rats: involvement of capsaicin-sensitive primary afferents. Agents Actions, 38, C28–C30.

    Article  PubMed  CAS  Google Scholar 

  • Mizumoto, A., Fujimura, M., Ohtawa, M., et al. (1992). Pituitary adenylate cyclase activating polypeptide stimulates gallbladder motility in conscious dogs. Regulatory Peptide, 42(1–2), 39–50.

    Article  CAS  Google Scholar 

  • Mohammed, H., Hannibal, J., Fahrenkrug, J., & Santer, R. (2002). Distribution and regional variation of pituitary adenylate cyclase activating polypeptide and other neuropeptides in the rat urinary bladder and ureter: effects of age. Urological Research, 30(4), 248–255.

    Article  PubMed  CAS  Google Scholar 

  • Moller, K., Reimer, M., Ekblad, E., et al. (1997a). The effects of axotomy and preganglionic denervation on the expression of pituitary adenylate cyclase activating peptide (PACAP), galanin and PACAP type 1 receptors in the rat superior cervical ganglion. Brain Research, 775(1–2), 166–182.

    Article  PubMed  CAS  Google Scholar 

  • Moller, K., Reimer, M., Hannibal, J., Fahrenkrug, J., Sundler, F., & Kanje, M. (1997b). Pituitary adenylate cyclase-activating peptide (PACAP) and PACAP type 1 receptor expression in regenerating adult mouse and rat superior cervical ganglia in vitro. Brain Research, 775(1–2), 156–165.

    Article  PubMed  CAS  Google Scholar 

  • Mulderry, P. K., & Lindsay, R. M. (1990). Rat dorsal root ganglion neurons in culture express vasoactive intestinal polypeptide (VIP) independently of nerve growth factor. Neuroscience Letters, 108(3), 314–320.

    Article  PubMed  CAS  Google Scholar 

  • Murray, E., Malley, S. E., Qiao, L. Y., Hu, V. Y., & Vizzard, M. A. (2004). Cyclophosphamide induced cystitis alters neurotrophin and receptor tyrosine kinase expression in pelvic Ganglia and bladder. Journal of Urology, 172(6 Pt 1), 2434–2439.

    Article  PubMed  CAS  Google Scholar 

  • Nadelhaft, I., & Vera, P. L. (1995). Central nervous system neurons infected by pseudorabies virus injected into the rat urinary bladder following unilateral transection of the pelvic nerve. Journal of Comparative Neurology, 359, 443–456.

    Article  PubMed  CAS  Google Scholar 

  • Novak, I. (2003). ATP as a signaling molecule: the exocrine focus. News in Physiological Sciences, 18, 12–17.

    PubMed  CAS  Google Scholar 

  • Onaga, T., Harada, Y., & Okamoto, K. (1998). Pituitary adenylate cyclase-activating polypeptide (PACAP) induces duodenal phasic contractions via the vagal cholinergic nerves in sheep. Regulatory Peptide, 77(1–3), 69–76.

    Article  CAS  Google Scholar 

  • Rong, W., Spyer, K. M., & Burnstock, G. (2002). Activation and sensitisation of low and high threshold afferent fibres mediated by P2X receptors in the mouse urinary bladder. Journal of Physiology, 541(Pt 2), 591–600.

    Article  PubMed  CAS  Google Scholar 

  • Rosamilia, A., & Dwyera, P. L. (2000). Pathophysiology of interstitial cystitis. Current Opinion in Obstetrics and Gynecology, 12, 405–410.

    Article  PubMed  CAS  Google Scholar 

  • Sant, G. R., & Theoharides, T. C. (1999). Interstitial cystitis. Current Opinion in Urology, 9, 297–302.

    Article  PubMed  CAS  Google Scholar 

  • Schworer, H., Clemens, A., Katsoulis, S., Kohler, H., Creutzfeldt, W., & Schmidt, W. E. (1993). Pituitary adenylate cyclase-activating peptide is a potent modulator of human colonic motility. Scandinavian Journal of Gastroenterology, 28(7), 625–632.

    Article  PubMed  CAS  Google Scholar 

  • Seebeck, J., Lowe, M., Kruse, M. L., et al. (2002). The vasorelaxant effect of pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide in isolated rat basilar arteries is partially mediated by activation of nitrergic neurons. Regulatory Peptide, 107(1–3), 115–123.

    Article  CAS  Google Scholar 

  • Sherwood, N. M., Krueckl, S. L., & McRory, J. E. (2000). The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocrine Reviews, 21(6), 619–670.

    Article  PubMed  CAS  Google Scholar 

  • Spengler, D., Waeber, C., Pantaloni, C., et al. (1993). Differential signal transduction by five splice variants of the PACAP receptor. Nature, 365, 170–175.

    Article  PubMed  CAS  Google Scholar 

  • Steenstrup, B. R., Ottesen, B., Jorgensen, M., & Jorgensen, J. C. (1994). Pituitary adenylate cyclase activating polypeptide induces vascular relaxation and inhibits non-vascular smooth muscle activity in the rabbit female genital tract. Acta Physiologica Scandinavica, 152(2), 129–136.

    Article  PubMed  CAS  Google Scholar 

  • Sun, Y., Keay, S., De Deyne, P. G., & Chai, T. C. (2001a). Augmented stretch activated adenosine triphosphate release from bladder uroepithelial cells in patients with interstitial cystitis. Journal of Urology, 166(5), 1951–1956.

    Article  PubMed  CAS  Google Scholar 

  • Sun, Y., Keay, S., DeDeyne, P., & Chai, T. (2001b). Stretch-activated release of adenosine triphosphate by bladder uroepithelia is augmented in interstitial cystitis. Urology, 57(6 Suppl 1), 131.

    Article  PubMed  CAS  Google Scholar 

  • Sundler, F., Ekblad, E., Hannibal, J., et al. (1996). Pituitary adenylate cyclase-activating peptide in sensory and autonomic ganglia: localization and regulation. Annals of The New York Academy of Sciences, 805, 410–426.

    Article  PubMed  CAS  Google Scholar 

  • Vaudry, D., Gonzalez, B. J., Basille, M., Yon, L., Fournier, A., & Vaudry, H. (2000). Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmaceutical Review, 52(2), 269–324.

    CAS  Google Scholar 

  • Vizzard, M. A. (1997). Increased expression of neuronal nitric oxide synthase in bladder afferent and spinal neurons following spinal cord injury. Developmental Neuroscience, 19(3), 232–246.

    Article  PubMed  CAS  Google Scholar 

  • Vizzard, M. A. (2000a). Alterations in spinal cord Fos protein expression induced by bladder stimulation following cystitis. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 278(4), R1027–R1039.

    PubMed  CAS  Google Scholar 

  • Vizzard, M. A. (2000b). Changes in urinary bladder neurotrophic factor mRNA and NGF protein following urinary bladder dysfunction. Experimental Neurology, 161(1), 273–284.

    Article  PubMed  CAS  Google Scholar 

  • Vizzard, M. A. (2000c). Up-regulation of pituitary adenylate cyclase-activating polypeptide in urinary bladder pathways after chronic cystitis. Journal of Comparative Neurology, 420(3), 335–348.

    Article  PubMed  CAS  Google Scholar 

  • Vizzard, M. A. (2001). Alterations in neuropeptide expression in lumbosacral bladder pathways following chronic cystitis. Journal of Chemical Neuroanatomy, 21(2), 125–138.

    Article  PubMed  CAS  Google Scholar 

  • Wang, E. C., Lee, J. M., Ruiz, W. G., et al. (2005). ATP and purinergic receptor-dependent membrane traffic in bladder umbrella cells. Journal of Clinical Investigation, 115(9), 2412–2422.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y. Z., Danielsen, N., Sundler, F., & Mulder, H. (1998). Pituitary adenylate cyclase-activating peptide is upregulated in sensory neurons by inflammation. Neuroreport, 9(12), 2833–2836.

    PubMed  CAS  Google Scholar 

  • Zhang, Y. Z., Hannibal, J., Zhao, Q., et al. (1996). Pituitary adenylate cyclase activating peptide expression in the rat dorsal root ganglia: up-regulation after peripheral nerve injury. Neuroscience, 74(4), 1099–1110.

    PubMed  CAS  Google Scholar 

  • Zhang, Q., Shi, T.-J., Ji, R.-R., et al. (1995). Expression of pituitary adenylate cyclase-activating polypeptide in dorsal root ganglia following axotomy: time course and coexistence. Brain Research, 705, 149–158.

    Article  PubMed  CAS  Google Scholar 

  • Zizzo, M. G., Mule, F., & Serio, R. (2004). Interplay between PACAP and NO in mouse ileum. Neuropharmacology, 46(3), 449–455.

    Article  PubMed  CAS  Google Scholar 

  • Zvara, P., Braas, K. M., May, V., & Vizzard, M. A. (2006). A role for pituitary adenylate cyclase activating polypeptide (PACAP) in detrusor hyperreflexia after spinal cord injury (SCI). Annals of the New York Academy of Sciences, 1070, 622–628.

    Article  PubMed  CAS  Google Scholar 

  • Zvara, P., & Vizzard, M. A. (2007). Exogenous overexpression of nerve growth factor in the urinary bladder produces bladder overactivity and altered micturition circuitry in the lumbosacral spinal cord. BMC Physiology, 7(1), 9.

    Article  PubMed  CAS  Google Scholar 

  • Zvarova, K., Dunleavy, J. D., & Vizzard, M. A. (2005). Changes in pituitary adenylate cyclase activating polypeptide expression in urinary bladder pathways after spinal cord injury. Experimental Neurology, 192(1), 46–59.

    Article  PubMed  CAS  Google Scholar 

  • Zvarova, K., & Vizzard, M. A. (2005). Distribution and fate of cocaine- and amphetamine-regulated transcript peptide (CARTp)-expressing cells in rat urinary bladder: a developmental study. Journal of Comparative Neurology, 489(4), 501–517.

    Article  PubMed  CAS  Google Scholar 

  • Zvarova, K., & Vizzard, M. A. (2006). Changes in galanin immunoreactivity in rat micturition reflex pathways after cyclophosphamide-induced cystitis. Cell & Tissue Research, 324(2), 213–224.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by NIH grants DK051369, DK060481, and DK065989.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret A. Vizzard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girard, B.M., Wolf-Johnston, A., Braas, K.M. et al. PACAP-Mediated ATP Release from Rat Urothelium and Regulation of PACAP/VIP and Receptor mRNA in Micturition Pathways after Cyclophosphamide (CYP)-Induced Cystitis. J Mol Neurosci 36, 310–320 (2008). https://doi.org/10.1007/s12031-008-9104-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9104-4

Keywords

Navigation