Skip to main content

Advertisement

Log in

Effects of Gastric Vagotomy on Visceral Cell Proliferation Induced by Ventromedial Hypothalamic Lesions: Role of Vagal Hyperactivity

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In rats, ventromedial hypothalamic (VMH) lesions induce cell proliferation in the visceral organs (stomach, small intestine, liver, and pancreas) due to hyperactivity of the vagus nerve. To investigate the effects of selective gastric vagotomy on VMH lesion-induced cell proliferation and secretion of gastric acid, we assessed the mitotic index (the number of proliferating cell nuclear antigen (PCNA)-immunopositive cells per 1,000 cells in the gastric mucosal cell layer) and measured the volume of secreted basal gastric acid. Furthermore, to explore whether or not ethanol-induced acute gastric mucosal lesions (AGML) lead to ulcer formation in VMH-lesioned rats, we assessed the ulcer index of both sham-operated and VMH-lesioned rats after administration of ethanol. VMH lesions resulted in an increased mitotic index and thickness of the gastric mucosal cell layer and gave rise to the hypersecretion of gastric acid. Selective gastric vagotomy restored these parameters to normal without affecting cell proliferation in other visceral organs. Ethanol-induced AGML caused ulcers in sham VMH-lesioned rats, whereas VMH-lesioned rats were less likely to exhibit such ulcers. These results suggest that VMH lesion-induced vagally mediated cell proliferation in the visceral organs is associated with hyperfunction in these organs, and VMH lesion-induced resistance to ethanol may be due to thickening of the gastric mucosal cell layer resulting from cell proliferation in the gastric mucosa—this in turn is due to hyperactivity of the vagus nerve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Areche, C., Theoduloz, C., Yáñez, T., et al. (2008). Gastroprotective activity of ferruginol in mice and rats: effects on gastric secretion, endogenous prostaglandins and non-protein sulfhydryls. The Journal of Pharmacy and Pharmacology, 60, 245–251. doi:10.1211/jpp. 60.2.0014.

    Article  PubMed  CAS  Google Scholar 

  • Bray, G. A., & York, D. A. (1979). Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiological Reviews, 59, 719–809.

    PubMed  CAS  Google Scholar 

  • Brzozowski, T., Konturek, P. C., Konturek, S. J., et al. (2003). Implications of reactive oxygen species and cytokines in gastroprotection against stress-induced gastric damage by nitric oxide releasing aspirin. International Journal of Colorectal Disease, 18, 320–329.

    PubMed  Google Scholar 

  • Brzozowski, T., Konturek, P. C., Chlopicki, S., et al. (2008). Therapeutic potential of 1-methylnicotinamide against acute gastric lesions induced by stress: role of endogenous prostacyclin and sensory nerves. The Journal of Pharmacology and Experimental Therapeutics, 326, 105–116. doi:10.1124/jpet.108.136457.

    Article  PubMed  CAS  Google Scholar 

  • Evangelista, S. (2006). Role of sensory neurons in restitution and healing of ulcers. Current Pharmaceutical Design, 12, 2977–2984. doi:10.2174/138161206777947632.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson, A. V., Marcus, P., Spencer, J., & Wallace, J. L. (1988). Paraventricular nucleus stimulation causes gastroduodenal mucosal necrosis in the rat. The American Journal of Physiology, 255, R861–R865.

    PubMed  CAS  Google Scholar 

  • Grijalva, C. V., Deregnaucourt, J., Code, C. F., & Novin, D. (1980). Gastric mucosal damage in rats induced by lateral hypothalamic lesions: protection by propantheline, cimetidine, and vagotomy. Proceedings of the Society for Experimental Biology and Medicine, 163, 528–533.

    PubMed  CAS  Google Scholar 

  • Gyires, K. (2005). Gastric mucosal protection: from prostaglandins to gene-therapy. Current Medicinal Chemistry, 12, 203–215.

    PubMed  CAS  Google Scholar 

  • Hall, P. A., Levison, D. A., Woods, A. L., et al. (1990). Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin sections: an index of cell proliferation with evidence of deregulated expression in some neoplasms. The Journal of Pathology, 162, 285–294. doi:10.1002/path.1711620403.

    Article  PubMed  CAS  Google Scholar 

  • Ham, M., & Kaunitz, J. D. (2007). Gastroduodenal defense. Current Opinion in Gastroenterology, 23, 607–616. doi:10.1097/MOG.0b013e3282f02607.

    Article  PubMed  Google Scholar 

  • Ham, M., & Kaunitz, J. D. (2008). Gastroduodenal mucosal defense. Current Opinion in Gastroenterology, 24, 665–673. doi:10.1097/MOG.0b013e328311cd93.

    Article  PubMed  CAS  Google Scholar 

  • Hatazawa, R., Tanaka, A., Tanigami, M., et al. (2007). Cyclooxygenase-2 / prostaglandin E2 accelerates the healing of gastric ulcers via EP4 receptors. American Journal of Physiology. Gastrointestinal and Liver Physiology, 293, 88–97. doi:10.1152/ajpgi.00131.2007.

    Google Scholar 

  • Hawkey, C. J., & Langman, M. J. (2003). Non-steroidal anti-inflammatory drugs: overall risks and management. Complementary roles for COX-2 inhibitors and proton pump inhibitors. Gut, 52, 600–608. doi:10.1136/gut.52.4.600.

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Muñoz, R., Montiel-Ruíz, C., & Vázquez-Martínez, O. (2000). Gastric mucosal cell proliferation in ethanol-induced chronic mucosal injury is related to oxidative stress and lipid peroxidation in rats. Laboratory Investigation, 80, 1161–1169. doi:10.1038/labinvest.3780124.

    Article  PubMed  Google Scholar 

  • Hoffmann, W. (2008). Regeneration of the gastric mucosa and its glands from stem cells. Current Medicinal Chemistry, 15, 3133–3144. doi:10.2174/092986708786848587.

    Article  PubMed  CAS  Google Scholar 

  • Hyde, T. M., & Crook, J. M. (2001). Cholinergic systems and schizophrenia: primary pathology or epiphenomena? Journal of Chemical Neuroanatomy, 22, 53–63. doi:10.1016/S0891-0618(01)00101-6.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, S. (1992) Animal model of Obesity: hypothalamic lesions, in Obesity 1st Ed, P. Bjorntorp B. B., ed., J. P. Lippincott, Philadelphia, NJ, pp. 226-277.

  • Inoue, S., & Bray, G. A. (1979). Autonomic hypothesis for hypothalamic obesity. Life Sciences, 25, 561–566. doi:10.1016/0024-3205(79)90549-6.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, S., Bray, G. A., & Mullen, Y. S. (1977a). Effect of transplantation of pancreas on development of hypothalamic obesity. Nature, 266, 742–744. doi:10.1038/266742a0.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, S., Campfield, L. A., & Bray, G. A. (1977b). Comparison of metabolic alterations in hypothalamic and high fat diet-induced obesity. The American Journal of Physiology, 233, R162–R168.

    PubMed  CAS  Google Scholar 

  • Kageyama, H., Kageyama, A., Endo, Y., et al. (2003). Ventromedial hypothalamus lesions induce jejunal epithelial cell hyperplasia through an increase in gene expression of cyclooxygenase. International Journal of Obesity and Related Metabolic Disorders, 27, 1006–1013. doi:10.1038/sj.ijo.0802325.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko, H., Mitsuma, T., Nagai, H., et al. (1998). Central action of adrenomedullin to prevent ethanol-induced gastric injury through vagal pathways in rats. The American Journal of Physiology, 274, R1783–R1788.

    PubMed  CAS  Google Scholar 

  • Kato, K., Yang, H., & Tache, Y. (1995). Low doses of TRH analogue act in the dorsal motor nucleus to induce gastric protection in rats. The American Journal of Physiology, 269, R1301–R1307.

    PubMed  CAS  Google Scholar 

  • Kargman, S., Charleson, S., Cartwright, M., et al. (1996). Characterization of prostaglandin G/H synthase 1 and 2 in rat, dog, monkey, and human gastrointestinal tracts. Gastroenterology, 111, 445–454. doi:10.1053/gast.1996.v111.pm8690211.

    Article  PubMed  CAS  Google Scholar 

  • Kiba, T., Tanaka, K., Endo, O., & Inoue, S. (1992). Role of vagus nerve in increased DNA synthesis after hypothalamic ventromedial lesions in rat liver. The American Journal of Physiology, 262, G483–G487.

    PubMed  CAS  Google Scholar 

  • Kiba, T., Tanaka, K., Endo, O., & Inoue, S. (1993). Ventromedial hypothalamic lesions increase gastrointestinal DNA synthesis through vagus nerve in rats. Gastroenterology, 104, 475–484.

    PubMed  CAS  Google Scholar 

  • Kiba, T., Tanaka, K., Numata, K., Hoshino, M., Misugi, K., & Inoue, S. (1996). Ventromedial hypothalamic lesion-induced vagal hyperactivity stimulates rat pancreatic cell proliferation. Gastroenterology, 110, 885–893. doi:10.1053/gast.1996.v110.pm8608899.

    Article  PubMed  CAS  Google Scholar 

  • Konturek, S. J., Konturek, P. C., & Brzozowski, T. (2005). Prostaglandins and ulcer healing. Journal of Physiology and Pharmacology, 56(Suppl 5), 5–31.

    Google Scholar 

  • Lindholm, E., Shumway, G. S., Grijalva, C. V., Schallert, T., & Ruppel, M. (1975). Gastric pathology produced by hypothalamic lesions in rats. Physiology & Behavior, 14, 165–169. doi:10.1016/0031-9384(75)90161-4.

    Article  CAS  Google Scholar 

  • Malara, B., Jośko, J., Tyrpień, M., Malara, P., & Steplewska, K. (2005). Dynamics of changes in vascular endothelial growth factor (VEGF) expression and angiogenesis in stress-induced gastric ulceration in rats. Journal of Physiology and Pharmacology, 56, 59–71.

    Google Scholar 

  • Ohta, Y., Kobayashi, T., Nishida, K., Sasaki, E., & Ishiguro, I. (1999). Preventive effect of Oren-gedoku-to (Huanglian-Jie-Du-Tang) extract on the development of stress-induced acute gastric mucosal lesions in rats. Journal of Ethnopharmacology, 67, 377–384. doi:10.1016/S0378-8741(99)00093-8.

    Article  PubMed  CAS  Google Scholar 

  • Powley, T., & Opsahl, C. (1974). Ventromedial hypothalamic obesity abolished by subdiaphragmatic vagotomy. The American Journal of Physiology, 226, 25–33.

    Google Scholar 

  • Ridley, P. T., & Brooks, F. P. (1965). Alterations in Gastric Secretion Following Hypothalamic Lesions Producing Hyperphagia. The American Journal of Physiology, 209, 319–323.

    PubMed  CAS  Google Scholar 

  • Saftoiu, A., Ciurea, T., Georgescu, C., et al. (2003). Immunohistochemical assessment of proliferating cell nuclear antigen in primary hepatocellular carcinoma and dysplastic nodules. Journal of Cellular and Molecular Medicine, 7, 436–446. doi:10.1111/j.1582-4934.2003.tb00246.x.

    Article  PubMed  CAS  Google Scholar 

  • Sibilia, V., Rindi, G., Pagani, F., et al. (2003). Ghrelin protects against ethanol-induced gastric ulcers in rats: studies on the mechanisms of action. Endocrinology, 144, 353–359. doi:10.1210/en.2002-220756.

    Article  PubMed  CAS  Google Scholar 

  • Sibilia, V., Pagani, F., Lattuada, N., et al. (2007). Ticlopidine prevents the formation but delays the healing of ethanol-induced gastric lesions in the rat. Pharmacological Research, 55, 418–425. doi:10.1016/j.phrs.2007.01.017.

    Article  PubMed  CAS  Google Scholar 

  • Suga, A., Hirano, T., Kageyama, H., et al. (1999). Rapid increase in circulating leptin in ventromedial hypothalamus-lesioned rats: role of hyperinsulinemia and implication for upregulation mechanism. Diabetes, 48, 2034–2038. doi:10.2337/diabetes.48.10.2034.

    Article  PubMed  CAS  Google Scholar 

  • Szolcsányi, J., & Barthó, L. (2001). Capsaicin-sensitive afferents and their role in gastroprotection: an update. Journal of physiology (Paris), 95, 181–188. doi:10.1016/S0928-4257(01)00023-7.

    Article  Google Scholar 

  • Tanaka, K., Ohkawa, S., Nishino, T., Niijima, A., & Inoue, S. (1987). Role of the hepatic branch of the vagus nerve in liver regeneration in rats. The American Journal of Physiology, 253, G439–G444.

    PubMed  CAS  Google Scholar 

  • Tanaka, T., Guth, P., & Taché, Y. (1993). Role of nitric oxide in gastric hyperemia induced by central vagal stimulation. The American Journal of Physiology, 264, G280–G284.

    PubMed  CAS  Google Scholar 

  • Tominaga, S., Satoh, S., Nagase, H., Tanaka, K., & Inoue, S. (1993). Hypergastric acid secretion in rats with ventromedial hypothalamic lesions. Physiology & Behavior, 153, 1177–1182. doi:10.1016/0031-9384(93)90376-Q.

    Article  Google Scholar 

  • Vanhatalo, S., & Soinila, S. (2001). Evidence for nodose ganglion as the source of innervation to the anterior lobe of the pituitary gland. Neuroscience, 107, 491–497. doi:10.1016/S0306-4522(01)00367-0.

    Article  PubMed  CAS  Google Scholar 

  • Yang, H., Kawakubo, K., & Tache, Y. (1999). Intracisternal PYY increases gastric mucosal resistance: role of cholinergic, CGRP, and NO pathways. The American Journal of Physiology, 277, G555–G562.

    PubMed  CAS  Google Scholar 

  • Yeomans, N. D., Skeljo, M. V., & Giraud, A. S. (1994). Gastric mucosal defensive factors: the therapeutic strategy. Journal of Gastroenterology and Hepatology, 9(Suppl 1), S104–S108. doi:10.1111/j.1440-1746.1994.tb01312.x.

    Article  PubMed  Google Scholar 

  • Yoshimatsu, H., Niijima, A., Oomura, Y., et al. (1984). Effects of hypothalamic lesion on pancreatic autonomic nerve activity in the rat. Brain Research, 303, 147–152. doi:10.1016/0006-8993(84)90222-1.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J. F., & Zheng, F. (1997). The role of paraventricular nucleus of hypothalamus in stress-ulcer formation in rats. Brain Research, 761, 203–209. doi:10.1016/S0006-8993(97)00257-6.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, S. Y., Lu, Y. X., Owyang, C., et al. (2008). Gastric relaxation induced by hyperglycemia is mediated by vagal afferent pathways in the rat. American Journal of Physiology. Gastrointestinal and Liver Physiology, 294, 1158–1164. doi:10.1152/ajpgi.00067.2008.

    Article  Google Scholar 

Download references

Acknowledgement

We thank Professor Masashi Yoneda of Aichigakuin University School of Medicine for his help and advice in the conducting of this study.

Conflicts of interest

None of authors have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuji Inoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kintaka, Y., Osaka, T., Suzuki, Y. et al. Effects of Gastric Vagotomy on Visceral Cell Proliferation Induced by Ventromedial Hypothalamic Lesions: Role of Vagal Hyperactivity. J Mol Neurosci 38, 243–249 (2009). https://doi.org/10.1007/s12031-009-9200-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-009-9200-0

Keywords

Navigation