Skip to main content
Log in

BjDHNs Confer Heavy-metal Tolerance in Plants

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Dehydrin gene transcript could be induced by heavy metals, and some dehydrins possess the ability to bind metals. However, the correlation between dehydrins and heavy-metal stress is unknown. In order to elucidate the contribution of dehydrins to heavy-metal stress tolerance in plants, we cloned two SK2-type dehydrin genes from heavy-metal hyperaccumulator Brassica juncea, and investigated their Cd/Zn tolerance in transgenic plants. Semi-quantitative RT-PCR analysis revealed that BjDHN2/BjDHN3 expressed in the leaves, stems and roots at a low level and were up-regulated by heavy metals. Antisense BjDHN3 Brassica juncea plants showed more electrolyte leakage and higher malondialdehyde production than the control plants when exposed to heavy metals, and the total amount of metals accumulated in the whole plant was reduced. Transgenic tobacco plants overexpressing BjDHN2/BjDHN3 showed lower electrolyte leakage and malondialdehyde production than the control plants when exposed to Cd/Zn. These results indicated that BjDHN2/BjDHN3 enhanced the tolerance for heavy metals by reducing lipid peroxidation and maintaining membrane stability in the plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Close, T. J. (1997). Dehydrins: A commonality in the response of plants to dehydration and low temperature. Plant Physiology, 100, 291–296.

    Article  CAS  Google Scholar 

  2. Goday, A., Jensen, A. B., Culianez-Macia, F. A., et al. (1994). The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell, 6, 351–360.

    Article  PubMed  CAS  Google Scholar 

  3. Alsheikh, M. K., Heyen, B. J., & Randall, S. K. (2003). Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. The Journal of Biological Chemistry, 278, 40882–40889.

    Article  PubMed  CAS  Google Scholar 

  4. Asghar, R., Fenton, R. D., DeMason, D. A., et al. (1994). Nuclear and cytoplasmic localization of maize embryo and aleurone dehydrin. Protoplasma, 177, 87–94.

    Article  CAS  Google Scholar 

  5. Rorat, T. (2006). Plant dehydrins-tissue location, structure and function. Cellular & Molecular Biology Letters, 11, 536–556.

    Article  CAS  Google Scholar 

  6. Nylander, M., Svensson, J., Palva, E. T., et al. (2001). Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Molecular Biology, 45, 263–279.

    Article  PubMed  CAS  Google Scholar 

  7. Lan, Y., Cai, D., & Zheng, Y. (2005). Expression in Escherichia coli of three different soybean late embryogenesis abundant (LEA) genes to investigate enhanced stress tolerance. Journal of Integrative Plant Biology, 47, 613–621.

    Article  CAS  Google Scholar 

  8. Swire-Clark, G. A., & Marcotte, W. R. (1999). The wheat LEA protein Em functions as an osmoprotective molecule in Saccahromyces cerevisiae. Plant Molecular Biology, 39, 117–128.

    Article  PubMed  CAS  Google Scholar 

  9. Xu, D. P., Duan, X. L., & Wang, B. Y. (1996). Expression of a late embryogenesis abundant protein gene HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiology, 110, 249–257.

    PubMed  CAS  Google Scholar 

  10. Hara, M., Terashima, S., Fukaya, T., et al. (2003). Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta, 17, 290–298.

    Google Scholar 

  11. Maksymiec, W. (2007). Signaling responses in plants to heavy metal stress. Acta Physiologiae Plantarum DOI: 10.1007/s11738-007-0036-3.

  12. Kruger, C., Berkowitz, O., Stephan, U. W., et al. (2002). A metal binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. The Journal of Biological Chemistry, 277, 25062–25069.

    Article  PubMed  CAS  Google Scholar 

  13. Zhang, Y. X., Li, J. M, Yu, F., et al. (2006). Cloning and expression analysis of SKn-type dehydrin gene from bean in response to heavy metals. Molecular Biotechnology, 32, 205–218.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang, Y. X., Xu, J., Han, L., et al. (2006). Highly efficient shoot regeneration and Agrobacterium-mediated transformation protocol of Brassica juncea. Plant Molecular Biology Reports, 24, 255a–255i.

    Google Scholar 

  15. Yan, S. P., Zhang, Q. Y., Tang, Z. C., et al. (2006). Comparative proteomic analysis provides new insights into chilling stress responses in rice. Molecular & Cellular Proteomics, 5, 484–496.

    Article  CAS  Google Scholar 

  16. Li, B. L., & Mei, H. S. (1989). Relationship between oat leaf senescence and activated oxygen metabolism. Acta Phytophysiologica Sinica, 15, 6–12.

    CAS  Google Scholar 

  17. Welin, B. V., Olson, A., & Palva, E. T. (1995). Structure and organization of two closely related low-temperature-induced dhn/lea/rab-like genes in Arabidopsis thaliana L. Heynh. Plant Molecular Biology, 29, 391–395.

    Article  PubMed  CAS  Google Scholar 

  18. Kiyosue, T., Yamaguchi, S. K., & Shinozaki, K. (1994). Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant & Cell Physiology, 35, 225–231.

    CAS  Google Scholar 

  19. Thomashow, M. F. (1999). Plant cold acclimation, freezing tolerance genes and regulatory mechanisms. Plant Molecular Biology, 50, 571–599.

    Article  CAS  Google Scholar 

  20. Rorat, T., Grygorowicz, W. J., Irzykowski, W., et al. (2004). Expression of KS-type dehydrins is primarily regulated by factors related to organ type and leaf developmental stage during vegetative growth. Planta, 218, 878–885.

    Article  PubMed  CAS  Google Scholar 

  21. Alonso, A., Queiroz, C. S., & Magalhaes, A. C. (1997). Chilling stress leads to increased cell membrane rigidity in roots of coffee (Coffea arabica L.) seedlings. Biochimica et Biophysica Acta, 1323, 75–84.

    Article  PubMed  CAS  Google Scholar 

  22. Hara, M., Fujinaga, M., & Kuboi, T. (2005). Metal binding by citrus dehydrin with histidine-rich domains. Journal of Experimental Botany, 56, 2695–2703.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Alan Williams of the Graduate University of Chinese Academy of Sciences for his critical review of the English manuscript. The research was supported by the National High Technology Planning Program of China (Grant nos. 2006AA10Z407 and 2006AA06Z355), and China National Natural Sciences Foundation (Grant no. 30570146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan Yao Chai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Zhang, Y.X., Wei, W. et al. BjDHNs Confer Heavy-metal Tolerance in Plants. Mol Biotechnol 38, 91–98 (2008). https://doi.org/10.1007/s12033-007-9005-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-007-9005-8

Keywords

Navigation