Skip to main content
Log in

Indian Mustard Aquaporin Improves Drought and Heavy-metal Resistance in Tobacco

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

An aquaporin cDNA BjPIP1 isolated from heavy-metal accumulator Indian mustard (Brassica juncea L.) encodes a 286-residue protein. The deduced amino acid sequence of BjPIP1 with six putative transmembrane domains showed highest identity (85–99%) to PIP1 subfamily members. Semi-quantitative RT-PCR analysis revealed that BjPIP1 transcripts were more abundantly expressed in roots compared to aerial parts of Indian mustard. However, the expression of BjPIP1 in leaves was up-regulated by drought, salt, low temperature, and heavy metal stress, suggesting that BjPIP1 was involved in resistance to abiotic stresses. BjPIP1 under the control of 35S promoter was introduced into tobacco mediated with Agrobacterium tumefaciens, the transgenic tobacco exhibited a lower water loss rate, a decreased transpiration rate, and stomatal conductance compared to the wild-type plants under osmotic stress, indicating that BjPIP1 might enhance plant drought resistance by decreasing transpiration via reducing stomatal conductance. Furthermore, overexpression of BjPIP1 in tobacco enhanced Cd resistance of root growth, and lowered transpiration rate and stomatal conductance upon Cd exposure, suggesting that BjPIP1 might increase heavy-metal resistance by maintaining reasonable water status in tobacco. Moreover, the BjPIP1-overexpressing plants showed higher activities of antioxidative enzymes, and lower level of electrolyte leakage and malondialdehyde content under Cd stress, indicating BjPIP1 might enhance the antioxidative activity and membrane integrity in transgenic plants. Taken together, these results suggested that BjPIP1 might improve plant heavy-metal resistance through alleviating water deficit and oxidative damage induced by metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

CAT:

Catalase

EC:

Electrical conductivity

MDA:

Malondialchehyche

PEG:

Polyethylene glycol

POD:

Peroxidase

SOD:

Superoxide dismutase

References

  1. Blumwald, E. (2000). Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology, 12, 431–434. doi:10.1016/S0955-0674(00)00112-5.

    Article  CAS  Google Scholar 

  2. Zhu, J. K. (2001). Cell signal under salt, water and cold stresses. Current Opinion in Plant Biology, 4, 401–406. doi:10.1016/S1369-5266(00)00192-8.

    Article  CAS  Google Scholar 

  3. Walz, T., Typke, D., Smith, B. L., Agre, P., & Engel, A. (1995). Projection map of aquaporin-1 determined by electron crystallography. Nature Structural Biology, 3, 730–732. doi:10.1038/nsb0995-730.

    Article  Google Scholar 

  4. Johansson, I., Karlsson, M., Johanson, U., Larsson, C., & Kjellbom, P. (2000). The role of aquaporins in cellular and whole plant water balance. Biochimica et Biophysica Acta, 1465, 324–342. doi:10.1016/S0005-2736(00)00147-4.

    Article  CAS  Google Scholar 

  5. Johanson, U., Karlsson, M., Johansson, I., Gustavsson, S., Sjövall, S., Fraysse, L., et al. (2001). The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiology, 126, 1358–1369. doi:10.1104/pp.126.4.1358.

    Article  CAS  Google Scholar 

  6. Chaumont, F., Barrieu, F., Wojcik, E., Chrispeels, M. J., & Jung, R. (2001). Aquaporins constitute a large and highly divergent protein family in maize. Plant Physiology, 125, 1206–1215. doi:10.1104/pp.125.3.1206.

    Article  CAS  Google Scholar 

  7. Sakurai, J., Ishikawa, F., Yamaguchi, T., Uemura, M., & Maeshima, M. (2005). Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant and Cell Physiology, 46, 1568–1577. doi:10.1093/pcp/pci172.

    Article  CAS  Google Scholar 

  8. Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology, 134, 1683–1696. doi:10.1104/pp.103.033431.

    Article  CAS  Google Scholar 

  9. Oono, Y., Seki, M., Nanjo, T., Narusaka, M., Fujita, M., Satoh, R., et al. (2003). Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant Journal, 34, 868–887. doi:10.1046/j.1365-313X.2003.01774.x.

    Article  CAS  Google Scholar 

  10. Oono, Y., Seki, M., Satou, M., Iida, K., Akiyama, K., Sakurai, T., et al. (2006). Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Functional and Integrative Genomics, 6, 212–234. doi:10.1007/s10142-005-0014-z.

    Article  CAS  Google Scholar 

  11. Houde, M., Belcaid, M., Ouellet, F., Danyluk, J., Monroy, A. F., Dryanova, A., et al. (2006). Wheat EST resources for functional genomics of abiotic stress. BMC Genomics, 7, 149. doi:10.1186/1471-2164-7-149.

    Article  Google Scholar 

  12. Cramer, G. R., Ergül, A., Grimplet, J., Tillett, R. L., Tattersall, E. A. R., Bohlman, M. C., et al. (2007). Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Functional and Integrative Genomics, 7, 111–134. doi:10.1007/s10142-006-0039-y.

    Article  CAS  Google Scholar 

  13. Martre, P., Morillon, R., Barrieu, F., North, G. B., Nobel, S. P., & Chrispeels, M. J. (2002). Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiology, 130, 2101–2110. doi:10.1104/pp.009019.

    Article  CAS  Google Scholar 

  14. Siefritz, F., Tyree, M. T., Lovisolo, C., Schubert, A., & Kaldenhoff, R. (2002). PIP1 plasma membrane aquaporins in tobacco: From cellular effects to function in plants. Plant Cell, 14, 869–876. doi:10.1105/tpc.000901.

    Article  CAS  Google Scholar 

  15. Javot, H., Lauvergeat, V., Santoni, V., Martin-Laurent, F., Güçlü, J., Vinh, J., et al. (2003). Role of a single aquaporin isoform in root water uptake. The Plant Cell, 15, 509–522. doi:10.1105/tpc.008888.

    Article  CAS  Google Scholar 

  16. Aharon, R., Shahak, Y., Wininger, S., Bendov, R., Kapulnik, Y., & Galili, G. (2003). Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but to under drought or salt stress. The Plant Cell, 15, 439–447. doi:10.1105/tpc.009225.

    Article  CAS  Google Scholar 

  17. Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88, 1707–1719. doi:10.1016/j.biochi.2006.07.003.

    Article  CAS  Google Scholar 

  18. Zenk, M. H. (1996). Heavy metal detoxification in higher plants: A review. Gene, 179, 21–23. doi:10.1016/S0378-1119(96)00422-2.

    Article  CAS  Google Scholar 

  19. Sanita di Toppi, L., & Gabbrielli, R. (1999). Response to cadmium in higher plants. Environmental and Experimental Botany, 41, 105–130. doi:10.1016/S0098-8472(98)00058-6.

    Article  Google Scholar 

  20. Prasad, M. N. V. (1997). Trace metals. In M. N. V. Prasad (Ed.), Plant ecophysiology (pp. 207–249). New York: Wiley.

  21. Barcelo, J., Poschenrieder, C., Andreu, I., & Gunse, B. (1986). Cadmium-induced decrease of water stress resistance in bush bean plants (Phaseolus vulgaris L. cv. Contender) I. Effects of Cd on water potential, relative water content and cell wall elasticity. Journal of Plant Physiology, 125, 17–25.

    CAS  Google Scholar 

  22. Pandey, N., & Sharma, C. P. (2002). Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Science, 163, 753–758. doi:10.1016/S0168-9452(02)00210-8.

    Article  CAS  Google Scholar 

  23. Maggio, A., & Joly, R. J. (1995). Effects of mercuric chloride on the hydraulic conductivity of tomato root systems (evidence for a channel-mediated water pathway). Plant Physiology, 109, 331–335.

    CAS  Google Scholar 

  24. Tazawa, M., Ohkuma, E., Shibasaka, M., & Nakashima, S. (1997). Mercurial sensitive water transport in barley roots. Journal of Plant Research, 110, 435–442. doi:10.1007/BF02506803.

    Article  CAS  Google Scholar 

  25. Agre, P., Bonhivers, M., & Borgnia, M. J. (1998). The aquaporins, blueprints for cellular plumbing systems. The Journal of Biological Chemistry, 273, 14659–14662. doi:10.1074/jbc.273.24.14659.

    Article  CAS  Google Scholar 

  26. Reiter, R. S., Young, R. M., & Scolnik, P. A. (1992). Genetic linkage of the Arabidopsis genome: Methods for mapping with recombinant inbreds and random amplified polymorphic DNAs (RAPDs). In C. Konc, N. H. Chua, & J. Schell (Eds.), Methods in Arabidopsis research (pp. 170–190). Singapore: World Scientific.

    Google Scholar 

  27. Kramer, G. F., Norman, H. A., Krizek, D. T., & Mirecki, R. M. (1991). Influence of UV-B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber. Phytochemistry, 30, 2101–2108. doi:10.1016/0031-9422(91)83595-C.

    Article  CAS  Google Scholar 

  28. Alexieva, V., Sergiev, I., Mapelli, S., & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environment, 24, 1337–1344. doi:10.1046/j.1365-3040.2001.00778.x.

    Article  CAS  Google Scholar 

  29. Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287. doi:10.1016/0003-2697(71)90370-8.

    Article  CAS  Google Scholar 

  30. Cakmak, I., & Horst, W. J. (1991). Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Plant Physiology, 83, 463–468. doi:10.1111/j.1399-3054.1991.tb00121.x.

    Article  CAS  Google Scholar 

  31. Nickel, R. S., & Cunningham, B. A. (1969). Improved peroxidase assay method using Ieuco 2, 3, 6-trichlcroindophenol and application to comparative measurements of peroxidase catalysis. Analytical Biochemistry, 27, 292–299. doi:10.1016/0003-2697(69)90035-9.

    Article  CAS  Google Scholar 

  32. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. doi:10.1016/0003-2697(76)90527-3.

    Article  CAS  Google Scholar 

  33. Ruiter, R. K., van Eldik, G. J., van Herpen, M. M. A., Schrauwen, J. A. M., & Wullems, G. J. (1997). Expression in anthers of two genes encoding Brassica oleracea transmembrane channel proteins. Plant Molecular Biology, 34, 163–167. doi:10.1023/A:1005828325425.

    Article  CAS  Google Scholar 

  34. Cui, X. H., Hao, F. S., Chen, H., Cai, J. H., Chen, J., & Wang, X. C. (2005). Isolation and expression of an aquaporin-like gene VfPIP1 in Vicia faba. Progress in Natural Science, 15, 496–501. doi:10.1080/10020070512331342460.

    Article  CAS  Google Scholar 

  35. Lian, H. L., Yu, X., Ye, Q., Ding, X., Kitagawa, Y., Kwak, S. S., et al. (2004). The role of aquaporin RWC3 in drought avoidance in rice. Plant and Cell Physiology, 45, 481–489. doi:10.1093/pcp/pch058.

    Article  CAS  Google Scholar 

  36. Thomashow, M. F. (1999). Plant cold acclimation, freezing tolerance genes and regulatory mechanisms. Plant Molecular Biology, 50, 571–599. doi:10.1146/annurev.arplant.50.1.571.

    Article  CAS  Google Scholar 

  37. Otto, B., & Kaldenhoff, R. (2000). Cell-specific expression of the mercury insensitive plasma-membrane aquaporin NtAQP1 from Nicotiana tabacum. Planta, 211, 167–172. doi:10.1007/s004250000275.

    Article  CAS  Google Scholar 

  38. Alexandersson, E., Fraysee, L., Sjovall-Larsen, S., Gustavsson, S., Feller, M., Karlsson, M., et al. (2005). Whole gene family expression and drought stress regulation of aquaporins. Plant Molecular Biology, 59, 469–484. doi:10.1007/s11103-005-0352-1.

    Article  CAS  Google Scholar 

  39. Guo, L., Wang, Z. Y., Lin, H., Cui, W. E., Chen, J., Liu, M., et al. (2006). Expression and functional analysis of the rice plasma membrane intrinsic protein gene family. Cell Research, 16, 277–286. doi:10.1038/sj.cr.7310035.

    Article  CAS  Google Scholar 

  40. Secchi, F., Lovisolo, C., Uehlein, N., Kaldenhoff, R., & Schubert, A. (2007). Isolation and functional characterization of three aquaporins from olive (Olea europaea L.). Planta, 225, 381–392. doi:10.1007/s00425-006-0365-2.

    Article  CAS  Google Scholar 

  41. Jang, J. Y., Kim, D. G., Kim, Y. O., Kim, J. S., & Kang, H. (2004). An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Molecular Biology, 54, 713–725. doi:10.1023/B:PLAN.0000040900.61345.a6.

    Article  CAS  Google Scholar 

  42. Aroca, R., Amodeo, G., Fernandez-Illescas, S., Herman, E. M., Chaumont, F., & Chrispeels, M. J. (2005). The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots. Plant Physiology, 137, 341–353. doi:10.1104/pp.104.051045.

    Article  CAS  Google Scholar 

  43. Zhu, C., Schraut, D., Hartung, W., & Schaffner, A. R. (2005). Differential responses of maize MIP genes to salt stress and ABA. Journal of Experimental Botany, 56, 2971–2981. doi:10.1093/jxb/eri294.

    Article  CAS  Google Scholar 

  44. Yu, Q. J., Hu, Y. L., Li, J. F., Wu, Q., & Lin, Z. P. (2005). Sense and antisense expression of plasma membrane aquaporin BnPIP1 from Brassica napus in tobacco and its effects on plant drought resistance. Plant Science, 169, 647–656. doi:10.1016/j.plantsci.2005.04.013.

    Article  CAS  Google Scholar 

  45. Schurr, U., Gollan, T., & Schulze, E. D. (1992). Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. II. Stomatal sensitivity to abscisic acid imported from the xylem sap. Plant, Cell and Environment, 15, 561–567. doi:10.1111/j.1365-3040.1992.tb01489.x.

    Article  CAS  Google Scholar 

  46. Siddique, M. R. B., Hamid, A., & Islam, M. S. (1999). Drought stress effects on photosynthetic rate and leaf gas exchange of wheat. Botonical Bulletin of Academia Sinica, 40, 141–145.

    Google Scholar 

  47. Hanba, Y. T., Shibasaka, M., Hayashi, Y., Hayakawa, T., Kasamo, K., Terashima, I., et al. (2004). Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 assimilation in the leaves of transgenic rice plants. Plant and Cell Physiology, 45, 521–529. doi:10.1093/pcp/pch070.

    Article  CAS  Google Scholar 

  48. Comparot, S., Morilon, R., & Badot, P. M. (2000). Water permeability and revolving movement in Phaseolus vulgaris L. Plant and Cell Physiology, 41, 114–118.

    CAS  Google Scholar 

  49. Katsuhara, M., Koshio, K., Shibasaka, M., Hayashi, Y., Hayakawa, T., & Kasamo, K. (2003). Overexpression of a barley aquaporin increased the shoot/root ratio and raised salt sensitivity in transgenic rice plants. Plant and Cell Physiology, 44, 1378–1383. doi:10.1093/pcp/pcg167.

    Article  CAS  Google Scholar 

  50. Uehlein, N., Lovisolo, C., Siefritz, F., & Kaldenhoff, R. (2003). The tobacco aquaporin NtAQP1 is a membrane CO2 pore with physiological functions. Nature, 425, 734–737. doi:10.1038/nature02027.

    Article  CAS  Google Scholar 

  51. Costa, G., & Spitz, E. (1997). Influence of cadmium on soluble carbohydrates, free amino acids, proline content of in vitro cultured Lupinus albus. Plant Science, 128, 131–140. doi:10.1016/S0168-9452(97)00148-9.

    Article  CAS  Google Scholar 

  52. Rauser, W. E., & Dumbroff, E. B. (1981). Effect of excess cobalt, nickel and zinc on water relations of Phaseolus vulgaris. Environmental and Experimental Botany, 21, 235–249. doi:10.1016/0098-8472(81)90032-0.

    Article  Google Scholar 

  53. Alia, P., & Pardha Saradhi, P. (1991). Proline accumulation under heavy metal stress. Journal of Plant Physiology, 138, 554–558.

    CAS  Google Scholar 

  54. Alonso, A., Queiroz, C. S., & Magalhaes, A. C. (1997). Chilling stress leads to increased cell membrane rigidity in roots of coffee (Coffea arabica L) seedlings. Biochimica et Biophysica Acta, 1323, 75–84. doi:10.1016/S0005-2736(96)00177-0.

    Article  CAS  Google Scholar 

  55. Dixit, V., Pandey, V., & Shyam, R. (2001). Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L cv. Azad). Journal of Experimental Botany, 52, 1101–1109. doi:10.1093/jexbot/52.358.1101.

    Article  CAS  Google Scholar 

  56. Hachez, C., Zelazny, E., & Chaumont, F. (2006). Modulating the expression of aquaporin genes in planta: A key to understand their physiological functions? Biochimica et Biophysica Acta, 1758, 1142–1156. doi:10.1016/j.bbamem.2006.02.017.

    Article  CAS  Google Scholar 

  57. Bienert, G. P., Schjoerring, J. K., & Jahn, T. P. (2006). Membrane transport of hydrogen peroxide. Biochimica et Biophysica Acta, 1758, 994–1003. doi:10.1016/j.bbamem.2006.02.015.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National High Technology Planning Program of China (Grant nos. 2007AA021404 and 2006AA10Z407) and the Undergraduate Innovative Experiment Program of China University of Mining & Technology (Beijing) (Grant no. 0821).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuxiu Zhang or Tuanyao Chai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Wang, Z., Chai, T. et al. Indian Mustard Aquaporin Improves Drought and Heavy-metal Resistance in Tobacco. Mol Biotechnol 40, 280–292 (2008). https://doi.org/10.1007/s12033-008-9084-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9084-1

Keywords

Navigation