Skip to main content

Advertisement

Log in

A gene-trap strategy identifies quiescence-induced genes in synchronized myoblasts

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Cellular quiescence is characterized not only by reduced mitotic and metabolic activity but also by altered gene expression. Growing evidence suggests that quiescence is not merely a basal state but is regulated by active mechanisms. To understand the molecular programme that governs reversible cell cycle exit, we focused on quiescence-related gene expression in a culture model of myogenic cell arrest and activation. Here we report the identification of quiescence-induced genes using a gene-trap strategy. Using a retroviral vector, we generated a library of gene traps in C2C12 myoblasts that were screened for arrest-induced insertions by live cell sorting (FACS-gal). Several independent genetrap lines revealed arrest-dependent induction of βgal activity, confirming the efficacy of the FACS screen. The locus of integration was identified in 15 lines. In three lines, insertion occurred in genes previously implicated in the control of quiescence, i.e. EMSY — a BRCA2-interactin proteinm, p8/com1 — a p300HAT-binding protein and MLL5 — a SET domain protein. Our results demonstrate that expression of chromatin modulatory genes is induced in G0, providing support to the notion that this reversibly arrested state is actively regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

gBgal:

gBgalactosidase

CFU:

colony forming units

ENT:

EMSY N-terminus

FACS:

fluorescent activated cell sorting

FDG:

fluorescein di-β-D-galactopyranoside

LTR:

long terminal repeat

MLL5 :

mixed lineage leukaemia gene 5

MOI:

multiplicity of infection

MRF:

myogenic regulatory factor

PETG:

phenyl ethyl thiogalactoside

PHD:

plant homoeo domain

PR:

polymerase chain reaction

RNAi:

RNA interference

RT:

reverse transcriptase

SA:

splice acceptor

SET:

conserved in Su(var), Enhancer of Zeste, Trithorax

References

  • Andres V and Walsh K 1996 Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis; J. Cell Biol. 132 657–666

    Article  CAS  Google Scholar 

  • Beauchamp J R, Heslop L, Yu D S, Tajbakhsh S, Kelly R G, Wernig A, Buckingham M E, Partridge T A and Zammit PS 2000 Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells; J. Cell Biol. 151 1221–1234

    Article  CAS  Google Scholar 

  • Benecke B J, Ben-Ze’ev A and Penman S 1978 The control of mRNA production, translation and turnover in suspended and reattached anchorage-dependent fibroblasts; Cell 14 931–939

    Article  CAS  Google Scholar 

  • Bernier G, Mathieu M, De Repentigny Y, Vidal S M and Kothary R 1996 Cloning and characterization of mouse ACF7, a novel member of the dystonin subfamily of actin binding proteins; Genomics 38 19–29

    Article  CAS  Google Scholar 

  • Black D 1994 Familial breast cancer. BRCA1 down, BRCA2 to go; Curr. Biol. 4 1023–1024

    Article  CAS  Google Scholar 

  • Blau H M, Chiu C P and Webster C 1983 Cytoplasmic activation of human nuclear genes in stable heterocaryons; Cell 32 1171–1180

    Article  CAS  Google Scholar 

  • Blin N and Stafford D W 1976 A general method for isolation of high molecular weight DNA from eukaryotes; Nucleic Acids Res. 3 2303–2308

    Article  CAS  Google Scholar 

  • Caput D, Beutler B, Hartog K, Thayer R, Brown-Shimer S and Cerami A 1986 Identification of a common nucleotide sequence in the 3′-untranslated region of mRNA molecules specifying inflammatory mediators; Proc. Natl. Acad. Sci. USA 83 1670–1674

    Article  CAS  Google Scholar 

  • Carballo E, Lai W S and Blackshear P J 2000 Evidence that tristetraprolin is a physiological regulator of granulocyte—macrophage colony-stimulating factor messenger RNA deadenylation and stability; Blood 95 1891–1899

    CAS  PubMed  Google Scholar 

  • Clegg C H, Linkhart T A, Olwin B B and Hauschka S D 1987 Growth factor control of skeletal muscle differentiation: commitment to terminal differentiation occurs in G1 phase and is repressed by fibroblast growth factor, J. Cell Biol. 105 949–956

    Article  CAS  Google Scholar 

  • Cornelison D D and Wold B J 1997 Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells; Dev. Biol. 191 270–283

    Article  CAS  Google Scholar 

  • Davis R L, Weintraub H and Lassar A B 1987 Expression of a single transfected cDNA converts fibroblasts to myoblasts; Cell 51 987–1000

    Article  CAS  Google Scholar 

  • Deng L W, Chiu I and Strominger J L 2004 MLL 5 protein forms intranuclear foci, and overexpression inhibits cell cycle progression; Proc. Natl. Acad. Sci. USA 101 757–762

    Article  CAS  Google Scholar 

  • Dhawan J and Farmer S R 1990 Regulation of alpha 1 (I)-collagen gene expression in response to cell adhesion in Swiss 3T3 fibroblasts; J. Biol. Chem. 265 9015–9021

    CAS  PubMed  Google Scholar 

  • Dhawan J and Rando T A 2005 Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment; Trends Cell Biol. 15 666–673

    Article  CAS  Google Scholar 

  • Dike L E and Farmer S R 1988 Cell adhesion induces expression of growth-associated genes in suspension-arrested fibroblasts; Proc. Natl. Acad. Sci. USA 85 6792–6796

    Article  CAS  Google Scholar 

  • Emerling B M, Bonifas J, Kratz C P, Donovan S, Taylor B R, Green E D, Le BeauM M and Shannon K M 2002 MLL5, a homolog of Drosophila trithorax located within a segment of chromosome band 7q22 implicated in myeloid leukemia; Oncogene 21 4849–4854

    Article  CAS  Google Scholar 

  • Fiering S N, Roederer M, Nolan G P, Micklem D R, Parks D R and Herzenberg L A 1991 Improved FACS-Gal: flow cytometric analysis and sorting of viable eukaryotic cells expressing reporter gene constructs; Cytometry 12 291–301

    Article  CAS  Google Scholar 

  • Figueroa A, Cuadrado A, Fan J, Atasoy U, Muscat G E, Munoz-Canoves P, Gorospe M and Munoz A 2003 Role of HuR in skeletal myogenesis through coordinate regulation of muscle differentiation genes; Mol. Cell. Biol. 23 4991–5004

    Article  CAS  Google Scholar 

  • Friedrich G and Soriano P 1991 Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice; Genes Dev. 5 1513–1523

    Article  CAS  Google Scholar 

  • Gogos J A, Thompson R, Lowry W, Sloane B F, Weintraub H and Horwitz M 1996 Gene trapping in differentiating cell lines: regulation of the lysosomal protease cathepsin B in skeletal myoblast growth and fusion; J. Cell Biol. 134 837–847

    Article  CAS  Google Scholar 

  • Gossler A, Joyner A L, Rossant J and Skarnes W C 1989 Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes; Science 244 463–465

    Article  CAS  Google Scholar 

  • Hansen J, Floss T, Van Sloun P, Fuchtbauer E M, Vauti F, Arnold H H, Schnutgen F, Wurst W, von Melchner H and Ruiz P 2003 A large-scale, gene-driven mutagenesis approach for the functional analysis of the mouse genome; Proc. Natl. Acad. Sci. USA 100 9918–9922

    Article  CAS  Google Scholar 

  • Hawkins J D 1988 A survey on intron and exon lengths; Nucleic Acids Res. 16 9893–9908

    Article  CAS  Google Scholar 

  • Hughes-Davies L, Huntsman D, Ruas M, Fuks F, Bye J, Chin S F, Milner J, Brown L A, et al 2003 EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer; Cell 115 523–535

    Article  CAS  Google Scholar 

  • Karakesisoglou I, Yang Y and Fuchs E 2000 An epidermal plakin that integrates actin and microtubule networks at cellular junctions; J. Cell Biol. 149 195–208

    Article  CAS  Google Scholar 

  • Kargul G J, Dudekula D B, Qian Y, Lim M K, Jaradat S A, Tanaka T S, Carter M G and Ko M S 2001 Verification and initial annotation of the NIA mouse 15K cDNA clone set; Nat. Genet. 28 17–18

    PubMed  Google Scholar 

  • Kodama A, Karakesisoglou I, Wong E, Vaezi A and Fuchs E 2003 ACF7: an essential integrator of microtubule dynamics; Cell 115 343–354

    Article  CAS  Google Scholar 

  • Kotani H, Newton P B 3rd, Zhang S, Chiang Y L, Otto E, Weaver L, Blaese R M, Anderson W F and McGarrity G J 1994 Improved methods of retroviral vector transduction and production for gene therapy; Hum. Gene Ther. 5 19–28

    Article  CAS  Google Scholar 

  • Lassar A B, Skapek S X and Novitch B 1994 Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal; Curr. Opin. Cell Biol. 6 788–794

    Article  CAS  Google Scholar 

  • Leung C L, Sun D, Zheng M, Knowles D R and Liem R K 1999 Microtubule actin cross-linking factor (MACF): a hybrid of dystonin and dystrophin that can interact with the actin and microtubule cytoskeletons; J. Cell Biol. 147 1275–1286

    Article  CAS  Google Scholar 

  • Lih C J, Cohen S N, Wang C and Lin-Chao S 1996 The plateletderived growth factor alpha-receptor is encoded by a growth-arrest-specific (gas) gene; Proc. Natl. Acad. Sci. USA 93 4617–4622

    Article  CAS  Google Scholar 

  • Milasincic D J, Dhawan J and Farmer S R 1996 Anchorage-dependent control of muscle-specific gene expression in C2C12 mouse myoblasts; In Vitro Cell. Dev. Biol. Anim. 32 90–99

    Article  CAS  Google Scholar 

  • Myer V E, Fan X C and Steitz J A 1997 Identification of HuR as a protein implicated in AUUUA-mediated mRNA decay; EMBO J. 16 2130–2139

    Article  CAS  Google Scholar 

  • Nadal-Ginard B 1978 Commitment, fusion and biochemical differentiation of a myogenic cell line in the absence of DNA synthesis; Cell 15 855–864

    Article  CAS  Google Scholar 

  • Olson E N 1992 Interplay between proliferation and differentiation within the myogenic lineage; Dev. Biol. 154 261–272

    Article  CAS  Google Scholar 

  • Reddy S, DeGregori J V, von Melchner H and Ruley H E 1991 Retrovirus promoter-trap vector to induce lacZ gene fusions in mammalian cells; J. Virol. 65 1507–1515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sachidanandan C, Sambasivan R and Dhawan J 2002 Tristetraprolin and LPS-inducible CXC chemokine are rapidly induced in presumptive satellite cells in response to skeletal muscle injury; J. Cell Sci. 115 2701–2712

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch E F and Maniatis T 1989 Molecular cloning: a laboratory manual. 2nd edition (New York: Cold Spring Harbor Laboratory)

    Google Scholar 

  • Seale P and Rudnicki M A 2000 A new look at the origin, function, and “stem-cell” status of muscle satellite cells; Dev. Biol. 218 115–124

    Article  CAS  Google Scholar 

  • Seale P, Sabourin L A, Girgis-Gabardo A, Mansouri A, Gruss P and Rudnicki M A 2000 Pax7 is required for the specification of myogenic satellite cells; Cell 102 777–786

    Article  CAS  Google Scholar 

  • Shaw G and Kamen R 1986 A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation; Cell 46 659–667

    Article  CAS  Google Scholar 

  • Skarnes W C, Auerbach B A and Joyner A L 1992 A gene trap approach in mouse embryonic stem cells: the lacZ reporter is activated by splicing, reflects endogenous gene expression, and is mutagenic in mice; Genes Dev. 6 903–918

    Article  CAS  Google Scholar 

  • Springer M L and Blau H M 1997 High-efficiency retroviral infection of primary myoblasts; Somat. Cell Mol. Genet. 23 203–209

    Article  CAS  Google Scholar 

  • Stoykova A, Chowdhury K, Bonaldo P, Torres M and Gruss P 1998 Gene trap expression and mutational analysis for genes involved in the development of the mammalian nervous system; Dev. Dyn. 212 198–213

    Article  CAS  Google Scholar 

  • Vasseur S, Hoffmeister A, Garcia-Montero A, Mallo G V, Feil R, Kuhbandner S, Dagorn J C and Iovanna J L 2002 p8-deficient fibroblasts grow more rapidly and are more resistant to adriamycin-induced apoptosis; Oncogene 21 1685–1694

    Article  CAS  Google Scholar 

  • Voss A K, Thomas T and Gruss P 1998 Efficiency assessment of the gene trap approach; Dev. Dyn. 212 171–180

    Article  CAS  Google Scholar 

  • Wei Q and Paterson BM 2001 Regulation of MyoD function in the dividing myoblast; FEBS Lett. 490 171–178

    Article  CAS  Google Scholar 

  • Yaffe D and Saxel O 1977 A myogenic cell line with altered serum requirements for differentiation; Differentiation 7 159–166

    Article  CAS  Google Scholar 

  • Yusuf I and Fruman D A 2003 Regulation of quiescence in lymphocytes; Trends Immunol. 24 380–386

    Article  CAS  Google Scholar 

  • Zhang W, Wagner B J, Ehrenman K, Schaefer A W, DeMaria C T, Crater D, DeHaven K, Long L and Brewer G 1993 Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1; Mol. Cell. Biol. 13 7652–7665

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotsna Dhawan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sambasivan, R., Pavlath, G.K. & Dhawan, J. A gene-trap strategy identifies quiescence-induced genes in synchronized myoblasts. J Biosci 33, 27–44 (2008). https://doi.org/10.1007/s12038-008-0019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-008-0019-6

Keywords

Navigation