Skip to main content
Log in

Recent Origin of Dioecious and Gynodioecious Y Chromosomes in Papaya

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Sex of dioecious and gynodioecious papayas is controlled by two slightly different Y chromosomes, Y for males and Yh for hermaphrodites. All combinations of the Y and/or Yh chromosomes are lethal. We investigated the features of paired dioecious X- and Y-specific bacterial artificial chromosomes (BACs) and compared their sequences to corresponding gynodioecious X- and Y-specific BACs. Numerous chromosomal rearrangements were detected between the X- and Y-specific BACs, including inversions, deletions, insertions, and duplications. DNA sequence expansion was documented on the Y BAC. Dioecious and gynodioecious X-specific BACs were virtually identical. The Y- and Yh-specific BACs shared high degree of DNA sequence identity, but local chromosomal rearrangements were detected, as the consequence of suppression of recombination in the male specific region and the isolation of Y and Yh chromosomes enforced by the lethal effect. Analysis of sequence divergence between three dioecious X and Y gene pairs resulted in the estimated ages of divergence from 0.6 to 2.5 million years, reinforcing the hypothesis of a recent origin of the papaya sex chromosomes. The estimated age of divergence between Y and Yh chromosomes was approximately 73,000 years for Gene 5. Our findings indicate that Y and Yh chromosomes evolved from a common ancestral Y chromosome, possibly prior to the origin of agriculture. The existence of a hermaphrodite Yh chromosome is less likely to have resulted from human selection as once suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Atanassov I, Delichère C, Filatov DA, Charlesworth D, Negrutiu I, Monéger F (2001) Analysis and evolution of two functional Y-linked loci in a plant sex chromosome system. Mol Biol Evol 18:2162–2168

    PubMed  CAS  Google Scholar 

  2. Bachtrog D (2006) Expression profile of a degenerating neo-Y chromosome in Drosophila. Curr Biol 16:1694–1699

    Article  PubMed  CAS  Google Scholar 

  3. Bachtrog D (2005) Sex chromosome evolution: molecular aspects of Y-chromosome degeneration in Drosophila. Genome Res 15:1393–1401

    Article  PubMed  CAS  Google Scholar 

  4. Badillo VM (2000) Carica L. vs. Vasconcella. St. Hil. (Caricaceae): con la rehabilitación de este último. Ernstia 10:74–79

    Google Scholar 

  5. Badillo VM (1971) Monografia de la familia Caricaceae. Publicada por la Associacion de Profesores, Venezuela, Univ. Centr. Venez, p 220

    Google Scholar 

  6. Badillo VM (2001) Nota correctiva Vasconcellea St. Hil y no Vasconcella (Caricaceae). Ernstia 11:75–76

    Google Scholar 

  7. Bergero R, Forrest A, Kamau E, Charlesworth D (2007) Evolutionary strata on the X chromosomes of the dioecious plant Silene latifolia: evidence from new sex-linked genes. Genetics 175:1945–1954

    Article  PubMed  CAS  Google Scholar 

  8. Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG, Parkhill J (2005) ACT: the Artemis Comparison Tool. Bioinformatics 21:3422–3423

    Article  PubMed  CAS  Google Scholar 

  9. Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112:975–997

    Article  Google Scholar 

  10. Delichère C, Veuskens J, Hernould M, Barbacar N, Mouras A, Negrutiu I, Monéger F (1999) SlY1, the first active gene cloned from a plant Y chromosome, encodes a WD-repeat protein. EMBO J 18:4169–4179

    Article  PubMed  Google Scholar 

  11. Filatov DA (2005) Substitution rates in a new Silene latifolia sex linked gene, SlssX/Y. Mol Biol Evol 22:402–408

    Article  PubMed  CAS  Google Scholar 

  12. Gupta AK (2004) Origin of agriculture and domestication of plants and animals linked to early Holocene climate amelioration. Current Sci 87:54–59

    Google Scholar 

  13. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids SYp Ser 41:95–98

    CAS  Google Scholar 

  14. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  15. Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498

    PubMed  CAS  Google Scholar 

  16. Li W-H (1997) Molecular evolution. Sinauer, Sunderland

    Google Scholar 

  17. Liu Z, Moore PH, Ma H, Ackerman CM, Ragiba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352

    Article  PubMed  CAS  Google Scholar 

  18. Ming R, Yu Q, Moore PH (2007) Sex determination in papaya. Semin Cell Dev Biol 18:401–408

    Article  PubMed  CAS  Google Scholar 

  19. Ming R, Van Droogenbroeck B, Moore PH, Zee FT, Kyndt T, Scheldeman X, Sekioka T, Gheysen G (2005) Molecular diversity of Carica papaya and related species. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution, vol. vol 1B. Science Publishers, New Hampshire, pp 229–254

    Google Scholar 

  20. Ming R, Moore PH, Zee F, Abbey CA, Ma H, Paterson AH (2001) Construction and characterization of a papaya BAC library as a foundation for molecular dissection of a tree-fruit genome. Theor Appl Genet 102:892–899

    Article  CAS  Google Scholar 

  21. Moore RC, Kozyreva O, Lebel-Hardenack S, Siroky J, Hobza R, Vyskot B, Grant SR (2003) Genetic and functional analysis of DD44, a sex-linked gene from the dioecious plant Silene latifolia provides clues to early events in sex chromosome evolution. Genetics 163:321–334

    PubMed  CAS  Google Scholar 

  22. Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 106:2–9

    PubMed  CAS  Google Scholar 

  23. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    PubMed  CAS  Google Scholar 

  24. Nicolas M, Marais G, Hykelova V, Janousek B, Laporte V, Vyskot B, Mouchiroud D, Neqrutiu I, Charlesworth D, Moneqer F (2005) A gradual process of recombination restriction in the evolutionary history of the sex chromosomes in dioecious plants. PLoS Biology 3:47–56

    Article  CAS  Google Scholar 

  25. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  26. Storey WB (1976) Papaya. In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 21–24

    Google Scholar 

  27. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  28. Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperm: calibrating the family tree. Proc R Soc Lond B 268:2211–2220

    Article  Google Scholar 

  29. Yu Q, Hou S, Feltus FA, Jones MR, Murray J, Veatch O, Lemke C, Saw JH, Moore RC, Thimmapuram J, Liu L, Moore PH, Alam M, Jiang J, Paterson AH, Ming R (2008) Low X/Y divergence in four pairs of papaya sex-liked genes. Plant J 53:124–132

    Article  PubMed  CAS  Google Scholar 

  30. Yu Q, Hou S, Hobza R, Feltus FA, Wang X, Jin W, Skelton RL, Blas A, Lemke C, Saw JH, Moore PH, Alam M, Jiang J, Paterson AH, Vyskot B, Ming R (2007) Chromosomal location and gene paucity of the male specific region on papaya Y chromosome. Mol Genet Genomics 278:177–185

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Chris Saski for constructing the papaya male BAC library. This work was supported by a grant from NSF to R.M., Q.Y., P.H.M., J.J., and A.H.P. (DBI-0553417) and a USDA-ARS Cooperative Agreement (CA 58-3020-8-134) with the Hawaii Agriculture Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Ming.

Additional information

Communicated by

Appendix

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Multiple sequence alignment of Gene 6 alleles from Yh- (PH95B12), Y-(DM62K05), and X- (DM10G24) chromosomes of trioecious papaya (DOC 73 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Q., Navajas-Pérez, R., Tong, E. et al. Recent Origin of Dioecious and Gynodioecious Y Chromosomes in Papaya. Tropical Plant Biol. 1, 49–57 (2008). https://doi.org/10.1007/s12042-007-9005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-007-9005-7

Keywords

Navigation