Skip to main content
Log in

The mitochondrial DNA of Xenoturbella bocki: genomic architecture and phylogenetic analysis

  • Original Paper
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

The phylogenetic position of Xenoturbella bocki has been a matter of controversy since its description in 1949. We sequenced a second complete mitochondrial genome of this species and performed phylogenetic analyses based on the amino acid sequences of all 13 mitochondrial protein-coding genes and on its gene order. Our results confirm the deuterostome relationship of Xenoturbella. However, in contrast to a recently published study (Bourlat et al. in Nature 444:85–88, 2006), our data analysis suggests a more basal branching of Xenoturbella within the deuterostomes, rather than a sister-group relationship to the Ambulacraria (Hemichordata and Echinodermata).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://www.bioinf.uni-leipzig.de/Publications/SUPPLEMENTS/07- 009/

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest : selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  PubMed  CAS  Google Scholar 

  • Abascal F, Zardoya R, Posada D (2006) GenDecoder : genetic code prediction for metazoan mitochondria. Nucleic Acids Res 34:389–393

    Article  CAS  Google Scholar 

  • Adachi J, Hasegawa M (1996) Model of amino acid substitution in proteins encoded by mitochondrial DNA. J Mol Evol 42:459–468

    PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ, (1997) Gapped BLAST and PSI-BLAST : a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780

    Article  PubMed  CAS  Google Scholar 

  • Bourlat SJ, Nielsen C, Lockyer AE, Littlewood DT, Telford MJ (2003) Xenoturbella is a deuterostome that eats molluscs. Nature 424:925–928

    Article  PubMed  CAS  Google Scholar 

  • Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M, Lander ES, Thorndyke M, Nakano H, Kohn AB, Heyland A, Moroz LL, Copley RR, Telford MJ (2006) Deuterostome phylogeny reveals monophyletic chordates and the new phylum xenoturbellida. Nature 444:85–88

    Article  PubMed  CAS  Google Scholar 

  • Castresana J, Feldmaier-Fuchs G, Pä äbo S (1998a). Codon reassignment and amino acid composition in hemichordate mitochondria. Proc Natl Acad Sci USA 95:3703–3707

    Article  PubMed  CAS  Google Scholar 

  • Castresana J, Feldmaier-Fuchs G, Yokobori S, Satoh N, Pääbo S, (1998b). The mitochondrial genome of the hemichordata Balanoglossus carnosus and the evolution of deuterostome mitochondria. Genetics 150:1115–1123

    PubMed  CAS  Google Scholar 

  • Ehlers U (1991) Comparative morphology of statocysts in the Platyhelminthes and the Xenoturbellida. Hydrobiologia 227:263–271

    Article  Google Scholar 

  • Ehlers U, Sopott-Ehlers B (1997a) Xenoturbella bocki: organisation and phylogenetic position as sister taxon of the bilateria. Verh Dtsch Zool Ges 90:168

    Google Scholar 

  • Ehlers U, Sopott-Ehlers B (1997b) Ultrastructure of the subepidermal musculature of Xenoturbella bocki, the adelphotaxon of the bilateria. Zoomorphology 117:71–79

    Article  Google Scholar 

  • Fitch DH (2005) (ed) Introduction to nematode evolution and ecology. In: The C. elegans research community. WormBook. doi: /10.1895/wormbook.1.19.1 (31 August, 2005)

  • Franzén Å, Afzelius BA (1987) The ciliated epidermis of Xenoturbella bocki (Platyhelminthes, Xenoturbellida) with some phylogenetic considerations. Zool Scr 16:9–17

    Article  Google Scholar 

  • Fritzsch G, Schlegel M, Stadler P (2006) Alignments of mitochondrial genome arrangements: applications to metazoan phylogeny. J Theor Biol 240:511–520

    Article  PubMed  CAS  Google Scholar 

  • Himeno H, Masaki H, Kawai T, Ohta T, Kumagai I, Miura K, Watanabe K (1987) Unusual genetic codes and a novel gene structure for tRNA(AGYSer) in starfish mitochondrial DNA. Gene 56:219–230

    Article  PubMed  CAS  Google Scholar 

  • Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatsh Chem 125:167–188

    Article  CAS  Google Scholar 

  • Israelsson O (1997) ... and molluscan embryogenesis. Nature 390:32

    Article  CAS  Google Scholar 

  • Israelsson O (1999) New light on the enigmatic Xenoturbella (phylum uncertain): ontogeny and phylogeny. Proc R Soc Lond Ser B 266:835–841

    Article  Google Scholar 

  • Israelsson O, Budd GE (2005) Eggs and embryos in Xenoturbella (phylum uncertain) are not ingested prey. Dev Genes Evol 215:358–363

    Article  PubMed  CAS  Google Scholar 

  • Jägersten G (1959) Further remarks on the early phylogeny of metazoa. Zoologiska Bidrag 33:79–108

    Google Scholar 

  • Lartillot N, Philippe H (2004) A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol 21:1095–1109

    Article  PubMed  CAS  Google Scholar 

  • Lartillot N, Philippe H (2006) Computing Bayes factors using thermodynamic integration. Syst Biol 55:195–207

    Article  PubMed  Google Scholar 

  • Lavrov DV, Brown WM (2001) Trichinella spiralis mtDNA: a nematode mitochondrial genome that encodes a putative ATP8 and normally structured tRNAs and has a gene arrangement relatable to those of coelomate metazoans. Genetics 157:621–637

    PubMed  CAS  Google Scholar 

  • Lavrov DV, Lang BF (2005) Poriferan mtDNA and animal phylogeny based on mitochondrial gene arrangements. Syst Biol 54:651–659

    Article  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE : a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  PubMed  CAS  Google Scholar 

  • Lundin K (1998) The epidermal ciliary rootlets of Xenoturbella bocki (Xenoturbellida) revisited: new support for a possible kinship with the acoelomorpha (Platyhelminthes). Zool Scr 27:263–270

    Article  Google Scholar 

  • Nohara M, Nishida M, Miya M, Nishikawa T (2005) Evolution of the mitochondrial genome in cephalochordata as inferred from complete nucleotide sequences from two Epigonichthys species. J Mol Biol 60:526–537

    CAS  Google Scholar 

  • Noren M, Jondelius U (1997) Xenoturbella’s molluscan relatives. Nature 390:31–32

    Article  CAS  Google Scholar 

  • Notredame C, Higgins D, Heringa J (2000) T-Coffee : a novel method for multiple sequence alignments. J Mol Biol 302:205–217

    Article  PubMed  CAS  Google Scholar 

  • Pedersen KJ, Pedersen LR (1986) Fine structural observations on the extracellular matrix (ECM) of Xenoturbella bocki Westblad, 1949. Acta Zool 67:103–113

    Google Scholar 

  • Pedersen KJ, Pedersen LR (1988) Ultrastructural observations on the epidermis of Xenoturbella bocki Westblad, 1949; with a discussion of epidermal cytoplasmic filament systems of invertebrates. Acta Zool 69:231–246

    Article  Google Scholar 

  • Raikova OI, Reuter M, Jondelius U, Gustafsson MKS (2000) An immunocytochemical and ultrastructural study of the nervous and muscular systems of Xenoturbella westbladi (bilateria inc. sed.). Zoomorphology 120:107–118

    Article  Google Scholar 

  • Reisinger E (1960) Was ist Xenoturbella? Z Wiss Zool 164:188–198

    Google Scholar 

  • Rieger RM, Tyler S, Smith III JPS, Rieger G (1991) Platyhelminthes: Turbellaria. In: Harrison FW, Bogitsh BJ (eds) Microscopic anatomy of invertebrates. Volume 3: Platyhelminthes and Nemertinea. Wiley-Liss, New York, pp 7–140

  • Rohde K, Watson N, Cannon LRG (1988) Ultrastructure of epidermal cilia of Pseudactinoposthia sp. (Platyhelminthes, Acoela): implications for the phylogenetic status of the Xenoturbellida and Acoelomorpha. J Submicrosc Cytol Pathol 20:759–767

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3 : Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Trillo I, Paps J, Loukota M, Ribera C, Jondelius U, Baguñà J, Riutort M (2002) A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proc Natl Acad Sci USA 99:11246–11251

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Trillo I, Riutort M, Fourcade HM, Bagunñà J, Boore JL (2004) Mitochondrial genome data support the basal position of Acoelomorpha and the polyphyly of the Platyhelminthes. Mol Phylogenet Evol 33:321–332

    Article  PubMed  CAS  Google Scholar 

  • Sankoff D, Leduc G, Antoine N, Paquin B, Lang BF (1992) Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc Natl Acad Sci USA 89:6575–6579

    Article  PubMed  CAS  Google Scholar 

  • Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREEPUZZLE : maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  PubMed  CAS  Google Scholar 

  • Stach T, Dupont S, Isrealson O, Fauville G, Nakano H, Kånneby T, horndyke M (2005) Nerve cells of Xenoturbella bocki (phylum uncertain) and Harrimania kupfferi (enteropneusta) are positively immunoreactive to antibodies raised against echinoderm neuropeptides. J Mar Biol Assoc UK 85:1519–1524

    Article  CAS  Google Scholar 

  • Swofford DL (2002) PAUP* : Phylogenetic Analysis Using Parsimony (*and Other Methods) Version 4.0b10. Sinauer Associates, Sunderland (Handbook and Software)

  • Telford MJ, Lockyer AE, Cartwright-Finch C, Littlewood DT (2003) Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms. Proc Biol Sci 270:1077–1083

    Article  PubMed  CAS  Google Scholar 

  • Westblad E (1949) Xenoturbella bocki n.g., n.sp., a peculiar, primitive Turbellarian type. Ark Zool 1:3–29

    Google Scholar 

  • Yokobori SI, Watanabe Y, Oshima T (2003) Mitochondrial genome of Ciona savignyi (Urochordata, Ascidiacea, Enterogona): comparison of gene arrangement and tRNA genes with Halocynthia roretzi mitochondrial genome. J Mol Evol 57:574–587

    Article  PubMed  CAS  Google Scholar 

  • Yokobori S, Oshima T, Wada H (2005) Complete nucleotide sequence of the mitochondrial genome of Doliolum nationalis with implications for evolution of Urochordates. Mol Phylogenet Evol 34:273–283

    Article  PubMed  CAS  Google Scholar 

  • Zrzavy J, Mihulka S, Kepka P, Bezdek A, Tietz D (1998) Phylogeny of the metazoa based on morphological and 18S ribosomal DNA evidence. Cladistics 14:249–285

    Google Scholar 

Download references

Acknowledgment

The project was funded by the Deutsche Forschungsgemeinschaft under the auspices of SPP-1174 Deep Metazoan Phylogeny, Projects HA 2103/4-1, SCHL 229/14-1, STA 850/2-1, and STA 850/3-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marleen Perseke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perseke, M., Hankeln, T., Weich, B. et al. The mitochondrial DNA of Xenoturbella bocki: genomic architecture and phylogenetic analysis. Theory Biosci. 126, 35–42 (2007). https://doi.org/10.1007/s12064-007-0007-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-007-0007-7

Keywords

Navigation