Skip to main content
Log in

Heterologous Expression of Aldehyde Dehydrogenase from Saccharomyces cerevisiae in Klebsiella pneumoniae for 3-Hydroxypropionic Acid Production from Glycerol

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

3-Hydroxypropionic acid (3-HP) is a commercially valuable platform compound. Klebsiella pneumoniae has been concerned as an appropriate host for 3-HP production because of its robust capacity to metabolize glycerol. Glycerol conversion to 3-HP in K. pneumoniae comprises two successive reactions: glycerol dehydratase catalyzes glycerol to 3-hydroxypropionaldehyde (3-HPA); aldehyde dehydrogenase catalyzes 3-HPA to 3-HP. Previous studies focusing on inducible expression of aldehyde dehydrogenase have shown defects of high cost of inducer and low catalytic activity due to inclusion body. Here we show a different strategy that a native promoter in the host K. pneumoniae was used to drive the heterologous expression of aldehyde dehydrogenase gene ald4 from Saccharomyces cerevisiae. The 3-HP yield of the recombinant reached a peak of 4.23 g/L at log phase, but it decreased during later period of fermentation. Except the validation of high activity of ald4, particularly, the 3-HP formation was uncovered to be closely coupled with cell division, and the lacking of NAD and ATP at latter fermentation phase became the bottleneck for cell growth and 3-HP accumulation. Furthermore, 3-HP is postulated to be converted to 3-HPA via feedback inhibition or other metabolite via unknown mechanism. Since glycerol dissimilation is a common mechanism in a variety of bacteria, the expression strategy using native promoter and implications may provide significant insight into the metabolic engineering for 3-HP production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andreessen B, Lange AB, Robenek H, Steinbüchel A (2010) Conversion of glycerol to poly(3-hydroxypropionate) in recombinant Escherichia coli. Appl Environ Microbiol 76(2):622–626

    Article  PubMed  CAS  Google Scholar 

  2. Ashok S, Raj S, Rathnasingh C, Park S (2011) Development of recombinant Klebsiella pneumonia ΔdhaT strain for the co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol. Appl Microbiol Biotechnol 90:1253–1265

    Article  PubMed  CAS  Google Scholar 

  3. Bennett HC, Boley EL, Clark WC, Parsons LB, Segur JB, Troy A, Andrews JTR, Pohle WD (1950) Report of the glycerin analysis committee. J Am Oil Chem Soc 27:412–413

    Article  Google Scholar 

  4. Celinska E (2010) Debottlenecking the 1,3-propanediol pathway by metabolic engineering. Biotechnol Adv 28:519–530

    Article  PubMed  CAS  Google Scholar 

  5. Forage RG, Foster MA (1982) Glycerol fermentation in Klebsiella pneumoniae: functions of the coenzyme B12-dependent glycerol and diol dehydratases. J Bacteriol 149:413–419

    PubMed  CAS  Google Scholar 

  6. Forage RG, Lin EC (1982) DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418. J Bacteriol 151:591–599

    PubMed  CAS  Google Scholar 

  7. Ishii M, Chuakrut S, Arai H, Igarashi Y (2004) Occurrence, biochemistry and possible biotechnological application of the 3-hydroxypropionate cycle. Appl Microbiol Biotechnol 64(5):605–610

    Article  PubMed  CAS  Google Scholar 

  8. Kleeb AC, Edalat MH, Gamper M, Haugstetter J, Giger L, Neuenschwander M, Kast P, Hilvert D (2007) Metabolic engineering of a genetic selection system with tunable stringency. Proc Natl Acad Sci USA 104(35):13907–13912

    Article  PubMed  CAS  Google Scholar 

  9. Klumpp S, Zhang ZG, Hwa T (2009) Growth rate-dependent global effects on gene expression in bacteria. Cell 139(7):1366–1375

    Article  PubMed  Google Scholar 

  10. Luo L, Seo JW, Baek JO, Oh BR, Heo SY, Hong WK, Kim DH, Kim C (2011) Identification and characterization of the propanediol utilization protein PduP of Lactobacillus reuteri for 3-hydroxypropionic acid production from glycerol. Appl Microbiol Biotechnol 89:697–703

    Article  PubMed  CAS  Google Scholar 

  11. Raj SM, Rathnasingh C, Jo JE, Park S (2008) Production of 3-hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain. Process Biochem 43:1440–1446

    Article  CAS  Google Scholar 

  12. Raynaud C, Sarcabal P, Meynial-Salles I, Croux C, Soucaille P (2003) Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum. Proc Natl Acad Sci USA 100(9):5010–5015

    Article  PubMed  CAS  Google Scholar 

  13. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  14. Schwarz M, Kopcke B, Weber RW, Sterner O, Anke H (2004) 3-Hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry 65(15):2239–2245

    Article  PubMed  CAS  Google Scholar 

  15. Stephanopoulos G, Vallino JJ (1991) Network rigidity and metabolic engineering in metabolite overproduction. Science 252:1675–1681

    Article  PubMed  CAS  Google Scholar 

  16. Sun J, van den Heuvel J, Soucaille P, Qu Y, Zeng AP (2003) Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria. Biotechnol Prog 19(2):263–272

    Article  PubMed  CAS  Google Scholar 

  17. Suthers PF, Cameron DC (2001) Production of 3-hydroxypropionic acid in recombinant organisms. PCT Patent WO 2001016346A1

  18. Van Maris AJ, Konings WN, van Dijken JP, Pronk JT (2004) Microbial export of lactic and 3-hydroxypropanoic acid: implications for industrial fermentation processes. Metab Eng 6(4):245–255

    Article  PubMed  Google Scholar 

  19. Wang JF, Xiu ZL, Fang SD (2001) Determination of glycerin concentration during the fermentation of glycerin to 1,3-propanediol. Ind Microbiol 31:33–35

    Google Scholar 

  20. Werpy T, Petersen G (2004) Top value added chemicals from biomass. U.S. DOE, Washington, DC

    Google Scholar 

  21. Zhu JG, Ji XJ, Huang H, Du J, Li S, Ding YY (2009) Production of 3-hydroxypropionic acid by recombinant Klebsiella pneumoniae based on aeration and ORP controlled strategy. Korean J Chem Eng 26:1679–1685

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 20876009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingfang Tian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, K., Wang, X., Ge, X. et al. Heterologous Expression of Aldehyde Dehydrogenase from Saccharomyces cerevisiae in Klebsiella pneumoniae for 3-Hydroxypropionic Acid Production from Glycerol. Indian J Microbiol 52, 478–483 (2012). https://doi.org/10.1007/s12088-012-0280-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-012-0280-0

Keywords

Navigation