Skip to main content

Advertisement

Log in

Molecular biology of rhabdomyosarcoma

  • Educational Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Rhabdomyosarcoma (RMS) is one of the most common extracranial solid tumours in children. Embryonal and alveolar subtypes of RMS present completely different genetic abnormalities. Embryonal RMS (eRMS) is characterised by loss of heterozygosity on the short arm of chromosome 11 (11p15.5), suggesting inactivation of a tumour-suppressor gene. In contrast, the majority (80–85%) of the alveolar RMS (aRMS) have the reciprocal chromosomal translocations ‘t(2;13)(q35;q14) or t(1;13)(p36;q14). t(2;13) appears in approximately 70% of patients with the alveolar subtype. The molecular counterpart of this translocation consists of the generation of a chimeric fusion gene involving the /PAX3/ gene located in chromosome 2 and a member of the fork-head family, /FOXO1/ (formerly /FKHR/), located in chromosome 13. A less frequent variant translocation t(1;13) involves another PAX family gene, /PAX7/, located in chromosome 1 and /FOXO1/ and is present in 10–15% of cases of the alveolar subtype in RMS. Recently, many studies focused on cancer have demonstrated the great potential of the genomic approach based on tumour expression profiles. These technologies permit the identification of new regulatory pathways. Molecular detection of minimal disease by a sensitive method could contribute to better treatment stratification in these patients. In RMS, the advances in the knowledge of the biological characteristics of the tumour are slowly translated into the clinical management of children with this tumour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. IARC (1998) International incidence of childhood cancer, 1998 (IICC-2), Vol. II. IARC Scientific Publication No. 144

  2. Meyer WH, Spunt SL (2004) Soft tissue sarcomas of childhood. Cancer Treat Rev 30:269–280

    Article  PubMed  CAS  Google Scholar 

  3. Pappo AS, Shapiro DN, Crist WM, Maurer HM (1995) Biology and therapy of pediatric rhabdomyosarcoma. J Clin Oncol 13:2123–2139

    PubMed  CAS  Google Scholar 

  4. Crist WM, Anderson JR, Meza JL et al (2001) Intergroup rhabdomyosarcoma study-IV: results for patients with nonmetastatic disease. J Clin Oncol 19:3091–3102

    PubMed  CAS  Google Scholar 

  5. Raney RB, Anderson JR, Barr FG et al (2001) Rhabdomyosarcoma and Undifferentiated Sarcoma in the First Two Decades of Life: A Selective Review of Intergroup Rhabdomyosarcoma Study Group Experience and Rationale for Intergroup Rhabdomyosarcoma Study V. Am J Pediatr Hematol Oncol 23:215–220

    Article  CAS  Google Scholar 

  6. Newton WA Jr, Gehan EA, Webber BL et al (1995) Classification of rhabdomyosarcomas and related sarcomas. Pathologic aspects and proposal for a new classification — an Intergroup Rhabdomyosarcoma Study. Cancer 76:1073–1085

    Article  PubMed  Google Scholar 

  7. Scrable H, Witte D, Shimada H et al (1989) Molecular differential pathology of rhabdomyosarcoma. Genes Chromosomes Cancer 1:23–35

    Article  PubMed  CAS  Google Scholar 

  8. Loh EWJ, Scrable HJ, Livanos E et al. Human chromosome 11 contains two different growth suppresser genes for embryonal rhabdomyosarcoma. Proc Natl Acad Sci U S A 89:1755–1759

  9. Bridge JA, Liu J, Weibolt V et al (2000) Novel genomic imbalances in embryonal rhabdomyosarcoma revealed by comparative genomic hybridization: an Intergroup Rhabdomyosarcoma Study. Genes Chromosome Cancer 27: 337–344

    Article  CAS  Google Scholar 

  10. Barr FG (1997) Molecular genetics and pathogenesis of rhabdomyosarcoma. J Pediatr Hematol Oncol 19:483–491

    Article  PubMed  CAS  Google Scholar 

  11. Barr FG (2001) Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 20:5736–5746

    Article  PubMed  CAS  Google Scholar 

  12. Galili N, Davis RJ, Fredericks WJ et al (1993) Fusion of a fork head domain gene to PAX 3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 5:230–235

    Article  PubMed  CAS  Google Scholar 

  13. Davis RJ, D’Cruz CM, Lowell MA et al (1994) Fusion of PAX7 to the FKHR by the variant t(1;13) (p36;q14)translocation in alveolar rhabdomyosarcomas. Cancer Res 54:2869–2872

    PubMed  CAS  Google Scholar 

  14. Bennicelli JL, Fredericks WJ, Wilson RB et al (1995) Wild-type PAX3 protein and the PAX3-FKHR fusion protein of alveolar rhabdomyosarcoma contain potent, structurally distinct transcriptional activation domains. Oncogene 11: 119–130

    PubMed  CAS  Google Scholar 

  15. Ludolph DC, Konieczny SF (1995) Transcription factor families: muscling in on the myogenic program. FASEB J 9:1595–1604

    PubMed  CAS  Google Scholar 

  16. Scheidler S, Fredericks WJ, Rauscher FJ III (1996) The hybrid PAX3-FKHR fusion protein of alveolar rhabdomyosarcoma transforms fibroblasts in culture. Proc Natl Acad Sci U S A 93:9805–9809

    Article  PubMed  CAS  Google Scholar 

  17. Bernasconi M, Remppis A, Fredericks WJ et al (1996) Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins. Proc Natl Acad Sci U S A 93: 13164–13169

    Article  PubMed  CAS  Google Scholar 

  18. Anderson J, Gordon A, Pritchard-Jones K et al (1999) Genes, chromosomes and rhabdomyosarcoma. Genes Chromosome Cancer 26:275–285

    Article  CAS  Google Scholar 

  19. Sorensen PHB, Lynch JC, Qualman SJ et al (2002) PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the Children’s Oncology Group. J Clin Oncol 20:2672–2679

    Article  PubMed  CAS  Google Scholar 

  20. Driman D, Thorner PS, Greenberg ML et al (1994) MYCN gene amplification in rhabdomyosarcoma. Cancer 15:2231–2237

    Article  Google Scholar 

  21. Forus A, Florenes VA, Maelandsmo GM et al (1993) Mapping of amplification units in the q13–14 region of chromosome 12 in human sarcomas: some amplicons do not include MDM2. Cell Growth Differ 4:1065–1070

    PubMed  CAS  Google Scholar 

  22. Visser M, Sijmons C, Bras J et al (1997) Allelotype of pediatric rhabdomyosarcoma. Oncogene 15:1309–1314

    Article  PubMed  CAS  Google Scholar 

  23. Skubitz KM, Skubitz AP (2004) Characterization of sarcomas by means of gene expression. J Lab Clin Med 144:78–91

    Article  PubMed  CAS  Google Scholar 

  24. Baird K, Davis S, Antonescu CR et al (2005) Gene expression profiling of human sarcomas: insights into sarcoma biology. Cancer Res 65:9226–9235

    Article  PubMed  CAS  Google Scholar 

  25. West RB, van de Rijn M (2006) The role of microarray technologies in the study of soft tissue tumours. Histopathology 48:22–31

    Article  PubMed  CAS  Google Scholar 

  26. Khan J, Wie JS, Ringner M et al (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673–679

    Article  PubMed  CAS  Google Scholar 

  27. Baer C, Nees M, Breit S et al (2004) Profiling and functional annotation of mRNA gene expression in pediatric rhabdomyosarcoma and Ewing’s sarcoma. Int J Cancer 110:687–694

    Article  PubMed  CAS  Google Scholar 

  28. Schaaf GJ, Ruijter JM, van Ruissen F et al (2005) Full transcriptome analysis of rhabdomyosarcoma, normal, and fetal skeletal muscle: statistical comparison of multiple SAGE libraries. FASEB J 19:404–406

    PubMed  CAS  Google Scholar 

  29. Romualdi C, De Pitta C, Tombolan L et al (2006) Defining the gene expression signature of rhabdomyosarcoma by meta-analysis. BMC Genomics 7:287

    Article  PubMed  Google Scholar 

  30. Athale U, Shurtleff S, Jenkins J et al (2001) Use of reverse transcriptase polymerase chain reaction for diagnosis and staging of alveolar rhabdomyosarcoma, Ewing sarcoma family of tumors, and desmoplastic small round cell tumor. J Pediatr Hematol Oncol 23:99–104

    Article  PubMed  CAS  Google Scholar 

  31. Kelly KM, Womer RB, Barr FG (1996) Minimal disease detection in patients with alveolar rhabdomyosarcoma using a reverse transcriptase-polymerase chain reaction method. Cancer 78:1320–1327

    Article  PubMed  CAS  Google Scholar 

  32. Frascella E, Rosolen A (1998) Detection of the MyoD1 transcript in rhabdomyosarcoma cell lines and tumor samples by reverse transcription polymerase chain reaction. Am J Pathol 152:577–583

    PubMed  CAS  Google Scholar 

  33. Gattenloehner S, Dockhorn-Dworniczak B, Leuschner I et al (1999) A comparison of MyoD1 and fetal acetylcholine receptor expression in childhood tumors and normal tissues: implications for the molecular diagnosis of minimal disease in rhabdomyosarcomas. J Mol Diagn 1:23–31

    PubMed  CAS  Google Scholar 

  34. Gallego S, Llort A, Roma J (2006) Detection of bone marrow micrometastasis and microcirculating disease in rhabdomyosarcoma by a real-time RT-PCR assay. J Cancer Res Clin Oncol 132:356–362

    Article  PubMed  CAS  Google Scholar 

  35. Sartori F, Alaggio R, Zanazzo G et al (2006) Results of a prospective minimal disseminated disease study in human rhabdomyosarcoma using three different molecular markers. Cancer 106:1766–1775

    Article  PubMed  CAS  Google Scholar 

  36. MacKeigan JP, Murphy LO, Blenis J (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 7:591–600

    Article  PubMed  CAS  Google Scholar 

  37. McDowell HP, Meco D, Riccardi A et al (2006) Imatinib mesylate potentiates topotecan antitumor activity in rhabdomyosarcoma preclinical models. Int J Cancer 120:1141–1149

    Article  Google Scholar 

  38. Petricoin EF, Espina V, Araujo RP et al (2007) Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 67:3431–3440

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gallego Melcón.

Additional information

Supported by an unrestricted educational grant from Sanofi-Aventis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallego Melcón, S., Sánchez de Toledo Codina, J. Molecular biology of rhabdomyosarcoma. Clin Transl Oncol 9, 415–419 (2007). https://doi.org/10.1007/s12094-007-0079-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-007-0079-3

Key words

Navigation