Skip to main content

Advertisement

Log in

Histone deacetylase inhibitors: mechanism of action and therapeutic use in cancer

  • Educational Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Histone deacetylases (HDACs) remove the acetyl groups of lysine residues of histone tails leading to chromatin compaction and transcriptional repression. In addition, HDACs can also influence transcription-independent events such as mitosis or deoxyribonucleic acid (DNA) repair and deacetylate nonhistone proteins involved in cell proliferation and death, altering their function. Histone deacetylase inhibitors (HDACi) constitute a promising treatment for cancer therapy due to their low toxicity. HDACi have been shown to induce differentiation, cell-cycle arrest, and apoptosis and to inhibit migration, invasion, and angiogenesis in many cancer cell lines. In addition, these compounds inhibit tumor growth in animal models and show antitumor activity in patients. HDACi alone and in combination with a variety of anticancer drugs are being tested in clinical trials, showing significant anticancer activity both in hematological and solid tumors. SAHA (vorinostat, Zolinza) was the first HDACi approved by the US Food and Drug Administration to enter the clinical oncology market for treating cutaneous T-cell lymphoma (CTCL) and is being tested for other malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–

    Article  PubMed  CAS  Google Scholar 

  2. Riggs MG, Whittaker RG, Neumann JR, Ingram VM (1977). n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature 268(5619):462–464

    Article  PubMed  CAS  Google Scholar 

  3. Struhl K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12(5):599–606

    Article  PubMed  CAS  Google Scholar 

  4. Glaser KB (2007) HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol 74(5):659–671

    Article  PubMed  CAS  Google Scholar 

  5. Marks PA, Dokmanovic M (2005) Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert Opin Investig Drugs 14(12):1497–1511

    Article  PubMed  CAS  Google Scholar 

  6. Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435

    Article  PubMed  CAS  Google Scholar 

  7. Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5(10):981–989

    Article  PubMed  CAS  Google Scholar 

  8. Fischle W, Dequiedt F, Hendzel MJ et al (2002) Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 9(1):45–57

    Article  PubMed  CAS  Google Scholar 

  9. Li J, Wang J, Wang J et al (2000) Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. Embo J 19(16):4342–4350

    Article  PubMed  CAS  Google Scholar 

  10. Fraga MF, Ballestar E, Villar-Garea A et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400

    Article  PubMed  CAS  Google Scholar 

  11. Glozak MA, Seto E (2007) Histone deacetylases and cancer. Oncogene 26(37):5420–5432

    Article  PubMed  CAS  Google Scholar 

  12. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5(9):769–784

    Article  PubMed  CAS  Google Scholar 

  13. Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6(1):38–51

    Article  PubMed  CAS  Google Scholar 

  14. Rosato RR, Grant S (2005) Histone deacetylase inhibitors: insights into mechanisms of lethality. Expert Opin Ther Targets 9(4):809–824

    Article  PubMed  CAS  Google Scholar 

  15. Marks PA, Breslow R (2007) Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25(1):84–90

    Article  PubMed  CAS  Google Scholar 

  16. Yoshida M, Kijima M, Akita M, Beppu T (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 265(28):17174–17179

    PubMed  CAS  Google Scholar 

  17. Richon VM, Emiliani S, Verdin E et al (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci U S A 95(6):3003–3007

    Article  PubMed  CAS  Google Scholar 

  18. Duvic M, Talpur R, Ni X et al (2007) Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 109(1):31–39

    Article  PubMed  CAS  Google Scholar 

  19. Hu E, Dul E, Sung CM et al (2003) Identification of novel isoform-selective inhibitors within class I histone deacetylases. J Pharmacol Exp Ther 307(2):720–728

    Article  PubMed  CAS  Google Scholar 

  20. Haggarty SJ, Koeller KM, Wong JC et al (2003) Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci U S A 100(8): 4389–4394

    Article  PubMed  CAS  Google Scholar 

  21. Peart MJ, Smyth GK, van Laar RK et al (2005) Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci U S A 102(10):3697–3702

    Article  PubMed  CAS  Google Scholar 

  22. Xu WS, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26(37):5541–5552

    Article  PubMed  CAS  Google Scholar 

  23. Gui CY, Ngo L, Xu WS et al (2004) Histone deacetylase (HDAC) inhibitor activation of p21 WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci U S A 101(5):1241–1246

    Article  PubMed  CAS  Google Scholar 

  24. Insinga A, Monestiroli S, Ronzoni S et al (2005) Inhibitors of histone deacetylases induce tumorselective apoptosis through activation of the death receptor pathway. Nat Med 11(1):71–76

    Article  PubMed  CAS  Google Scholar 

  25. Ruefli AA, Ausserlechner MJ, Bernhard D et al (2001) The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc Natl Acad Sci U S A 98(19):10833–10838

    Article  PubMed  CAS  Google Scholar 

  26. Kim MS, Kwon HJ, Lee YM et al (2001) Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 7(4): 437–443

    Article  PubMed  Google Scholar 

  27. Mori T, Kim J, Yamano T et al (2005) Epigenetic up-regulation of C-C chemokine receptor 7 and C-X-C chemokine receptor 4 expression in melanoma cells. Cancer Res 65(5):1800–1807

    Article  PubMed  CAS  Google Scholar 

  28. Whetstine JR, Ceron J, Ladd B et al (2005) Regulation of tissue-specific and extracellular matrix-related genes by a class I histone deacetylase. Mol Cell 18(4):483–490

    Article  PubMed  CAS  Google Scholar 

  29. Karagiannis TC, El-Osta A (2006) Clinical potential of histone deacetylase inhibitors as stand alone therapeutics and in combination with other chemotherapeutics or radiotherapy for cancer. Epigenetics 1(3):121–126

    PubMed  Google Scholar 

  30. US National Institutes of Health, US National Library of Medicine (2008). www.clinicaltrials.gov. Accessed

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Aranda.

Additional information

Supported by an unrestricted educational grant from Pfizer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Iglesias, O., Ruiz-Llorente, L., Sánchez-Martínez, R. et al. Histone deacetylase inhibitors: mechanism of action and therapeutic use in cancer. Clin Transl Oncol 10, 395–398 (2008). https://doi.org/10.1007/s12094-008-0221-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-008-0221-x

Keywords

Navigation