Skip to main content
Log in

Profiling the Developing Jatropha curcas L. Seed Transcriptome by Pyrosequencing

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Jatropha curcas L. has received much attention recently as a potential oilseed crop for the production of renewable oil. Despite the interest in this crop, relatively little is known on the molecular biology of this species compared with more established oilseed crops. To gain a more detailed understanding of the processes involved in deposition of oil and protein within Jatropha seeds, we conducted high-throughput sequencing analysis of the transcriptome of developing J. curcas seeds using 454 sequencing. A single sequencing run yielded 195,692 sequences (46 Mbp) of raw sequence data. Assembly of this sequence data produced 12,419 contigs and 17,333 singletons. BLASTX searches of the contigs revealed that storage proteins were the most abundant transcripts. Oleosins, ribosomal proteins, metallothioneins and late embryogenesis abundant proteins were also highly represented. Curcin, a type-I ribosome-inactivating protein, accounted for 0.7% of the transcriptome. No transcripts for type-II ribosome-inactivating proteins were found, suggesting that these are not present in the seeds of J. curcas. To test the power of 454 sequencing compared to conventional gene sequencing as a tool for gene discovery, a search of the homologues for genes involved in the conversion of sucrose to triacylglycerol was conducted. Hits for all the known genes in this process were obtained. Pyrosequencing of the J. curcas developing seed transcriptome has provided a valuable increase in the amount of sequence data currently available for this species. The sequence data will be of great use to those engaged in J. curcas research and crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fairless D (2007) Biofuel: the little shrub that could—maybe. Nature 499:652–655

    Article  Google Scholar 

  2. King AJ et al (2009) Potential of Jatropha curcas as a source of renewable oil and animal feed. J Exp Bot 60(10):2897–2905

    Article  PubMed  CAS  Google Scholar 

  3. Heller J (1996) Physic nut. Jatropha curcas L. Promoting the conservation and use of underutilized and neglected crops. Institute of Plant Genetics and Crop Research, Gatersleben, Germany and International Plant Genetic Resource Institute, Rome, p 66

  4. White JA et al (2000) A new set of Arabidopsis expressed sequence tags from developing seeds. The metabolic pathway from carbohydrates to seed oil. Plant Physiol 124(4):1582–1594

    Article  PubMed  Google Scholar 

  5. Lu C, Wallis J, Browse J (2007) An analysis of expressed sequence tags of developing castor endosperm using a full-length cDNA library. BMC Plant Biol 7(1):42

    Article  PubMed  Google Scholar 

  6. van de Loo FJ, Turner S, Somerville C (1995) Expressed sequence tags from developing castor seeds. Plant Physiol 108(3):1141–1150

    Google Scholar 

  7. Chung Suh M et al (2003) Comparative analysis of expressed sequence tags from Sesamum indicum and Arabidopsis thaliana developing seeds. Plant Mol Biol 52(6):1107–1123

    Article  CAS  Google Scholar 

  8. Cahoon EB et al (1999) Biosynthetic origin of conjugated double bonds: production of fatty acid components of high-value drying oils in transgenic soybean embryos. Proc Nat Acad Sci USA 96(22):12935–12940

    Article  PubMed  CAS  Google Scholar 

  9. Costa G et al (2010) Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genomics 11(1):462

    Article  PubMed  Google Scholar 

  10. Emrich SJ et al (2007) Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res 17(1):69–73

    Article  PubMed  CAS  Google Scholar 

  11. Cheung F et al (2006) Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology. BMC Genomics 7(1):272

    Article  PubMed  Google Scholar 

  12. Weber APM et al (2007) Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol 144(1):32–42

    Article  PubMed  CAS  Google Scholar 

  13. Larson TR, Graham IA (2001) A novel technique for the sensitive quantification of acyl CoA esters from plant tissues. Plant J 25(1):115–125

    Article  PubMed  CAS  Google Scholar 

  14. Gasic K, Hernandez A, Korban SS (2004) RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol Biol Rep 22(4):437a–437g

    Article  Google Scholar 

  15. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9(9):868–877

    Article  PubMed  CAS  Google Scholar 

  16. Altschul SF et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25(17):3389–3402

    Article  PubMed  CAS  Google Scholar 

  17. Beisson F et al (2003) Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132:681–697

    Article  PubMed  CAS  Google Scholar 

  18. Chen GQ et al (2007) Expression profiles of genes involved in fatty acid and triacylglycerol synthesis in castor bean (Ricinus communis L.). Lipids 42:263–274

    Article  PubMed  CAS  Google Scholar 

  19. Juan L et al (2003) Cloning and expression of curcin, a ribosome-inactivating protein from the seeds of Jatropha curcas. Acta Bot Sin 45(7):858–863

    Google Scholar 

  20. Qin W et al (2005) Expression of a ribosome inactivating protein (curcin 2) in Jatropha curcas is induced by stress. J Biosci 30(3):351–357

    Article  PubMed  Google Scholar 

  21. Barbieri L, Battellia MG, Stirpe F (1993) Ribosome-inactivating proteins from plants. Biochim Biophys Acta 1154:237–282

    PubMed  CAS  Google Scholar 

  22. Hartley MR, Lord JM (2004) Genetics of ribosome inactivating proteins. Mini-Rev Med Chem 4:487–492

    PubMed  CAS  Google Scholar 

  23. Audi J et al (2005) Ricin poisoning: a comprehensive review. J Am Med Assoc 294(18):2342–2351

    Article  CAS  Google Scholar 

  24. Challoner KR, McCarron MM (1990) Castor bean intoxication. Ann Emerg Med 19(10):1177–1183

    Article  PubMed  CAS  Google Scholar 

  25. Salas JJ, Ohlrogge JB (2002) Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch Biochem Biophys 403(1):25–34

    Article  PubMed  CAS  Google Scholar 

  26. Schnurr JA et al (2002) Fatty acid export from the chloroplast. Molecular characterization of a major plastidial acyl-coenzyme A synthetase from Arabidopsis. Plant Physiol 129(4):1700–1709

    Article  PubMed  CAS  Google Scholar 

  27. Baud S, Dubreucq B, Miquel M, Rochat C, Lepiniec L (2008) Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling. In: The Arabidopsis Book. Rockville MD: American Society of Plant Biologists

  28. Lardizabal KD et al (2001) DGAT2 is a new diacylglycerol acyltransferase gene family: purification, cloning, and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity. J Biol Chem 276(42):38862–388629

    Article  PubMed  CAS  Google Scholar 

  29. He X et al (2004) Regulation of diacylglycerol acyltransferase in developing seeds of castor. Lipids 39(9):865–871

    Article  PubMed  CAS  Google Scholar 

  30. Ståhl U et al (2004) Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis. Plant Physiol 135(3):1324–1335

    Article  PubMed  Google Scholar 

  31. Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50(1):47–65

    Article  PubMed  CAS  Google Scholar 

  32. Mau CJ, West CA (1994) Cloning of casbene synthase cDNA: evidence for conserved structural features among terpenoid cyclases in plants. Proc Nat Acad Sci USA 91(18):8497–8501

    Article  PubMed  CAS  Google Scholar 

  33. Wildung MR, Croteau R (1996) A cDNA clone for taxadiene synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis. J Biol Chem 271(16):9201–9204

    Article  PubMed  CAS  Google Scholar 

  34. Martin DM, Faldt J, Bohlmann J (2004) Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol 135(4):1908–1927

    Article  PubMed  CAS  Google Scholar 

  35. Gerber E et al (2009) The plastidial 2-C-methyl-D-erythritol 4-phosphate pathway provides the isoprenyl moiety for protein geranylgeranylation in tobacco BY-2 cells. Plant Cell 21(1):285–300

    Article  PubMed  CAS  Google Scholar 

  36. Kasahara H et al (2002) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J Biol Chem 277(47):45188–45194

    Article  PubMed  CAS  Google Scholar 

  37. Okada K et al (2000) Five geranylgeranyl diphosphate synthases expressed in different organs Are localized into three subcellular compartments in Arabidopsis. Plant Physiol 122(4):1045–1056

    Article  PubMed  CAS  Google Scholar 

  38. Wang G, Dixon RA (2009) Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. Proc Nat Acad Sci USA 106(24):9914–9919

    Article  PubMed  CAS  Google Scholar 

  39. Kirby J et al (2010) Cloning of casbene and neocembrene synthases from Euphorbiaceae plants and expression in Saccharomyces cerevisiae. Phytochemistry 71(13):1466–1473

    Article  PubMed  CAS  Google Scholar 

  40. Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Nat Acad Sci USA 95:4126–4133

    Article  PubMed  CAS  Google Scholar 

  41. Carvalho CR et al (2008) Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci 174(6):613–617

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Garfield Weston Foundation. The individual sequence reads have been deposited in the GenBank Short Read Archive (SRA) as accession SRR027577. The 12,419 contigs have been deposited in the GenBank Transcriptome Shotgun Assembly (TSA) archive as accessions EZ407282-EZ419700. The annotations obtained from a BLASTX search with these contigs is presented in Supplementary Table 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian A Graham.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

(DOC 4,942 kb)

Supplementary Table 1

(XLS 1,542 kb)

Supplementary Table 2

(DOC 34 kb)

Supplementary Table 3

(DOC 55 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, A.J., Li, Y. & Graham, I.A. Profiling the Developing Jatropha curcas L. Seed Transcriptome by Pyrosequencing. Bioenerg. Res. 4, 211–221 (2011). https://doi.org/10.1007/s12155-011-9114-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-011-9114-x

Keywords

Navigation